Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(3): e0450822, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036376

RESUMEN

Viruses have developed many different strategies to counteract immune responses, and Vaccinia virus (VACV) is one of a kind in this aspect. To ensure an efficient infection, VACV undergoes a complex morphogenetic process resulting in the production of two types of infective virions: intracellular mature virus (MV) and extracellular enveloped virus (EV), whose spread depends on different dissemination mechanisms. MVs disseminate after cell lysis, whereas EVs are released or propelled in actin tails from living cells. Here, we show that ISG15 participates in the control of VACV dissemination. Infection of Isg15-/- mouse embryonic fibroblasts with VACV International Health Department-J (IHD-J) strain resulted in decreased EV production, concomitant with reduced induction of actin tails and the abolition of comet-shaped plaque formation, compared to Isg15+/+ cells. Transmission electron microscopy revealed the accumulation of intracellular virus particles and a decrease in extracellular virus particles in the absence of interferon-stimulated gene 15 (ISG15), a finding consistent with altered virus egress. Immunoblot and quantitative proteomic analysis of sucrose gradient-purified virions from both genotypes reported differences in protein levels and composition of viral proteins present on virions, suggesting an ISG15-mediated control of viral proteome. Lastly, the generation of a recombinant IHD-J expressing V5-tagged ISG15 (IHD-J-ISG15) allowed us to identify several viral proteins as potential ISG15 targets, highlighting the proteins A34 and A36, which are essential for EV formation. Altogether, our results indicate that ISG15 is an important host factor in the regulation of VACV dissemination. IMPORTANCE Viral infections are a constant battle between the virus and the host. While the host's only goal is victory, the main purpose of the virus is to spread and conquer new territories at the expense of the host's resources. Along millions of years of incessant encounters, poxviruses have developed a unique strategy consisting in the production two specialized "troops": intracellular mature virions (MVs) and extracellular virions (EVs). MVs mediate transmission between hosts, and EVs ensure advance on the battlefield mediating the long-range dissemination. The mechanism by which the virus "decides" to shed from the primary site of infection and its significant impact in viral transmission is not yet fully established. Here, we demonstrate that this process is finely regulated by ISG15/ISGylation, an interferon-induced ubiquitin-like protein with broad antiviral activity. Studying the mechanism that viruses use during infection could result in new ways of understanding our perpetual war against disease and how we might win the next great battle.


Asunto(s)
Interferones , Virus Vaccinia , Animales , Ratones , Virus Vaccinia/genética , Actinas/metabolismo , Proteómica , Fibroblastos/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/genética
2.
mSphere ; 7(1): e0096721, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080471

RESUMEN

Bacillus thuringiensis and other members of the Bacillus cereus family are resistant to many ß-lactams. Resistance is dependent upon the extracytoplasmic function sigma factor σP. We used label-free quantitative proteomics to identify proteins whose expression was dependent upon σP. We compared the protein profiles of strains which either lacked σP or overexpressed σP. We identified 8 members of the σP regulon which included four ß-lactamases as well as three penicillin-binding proteins (PBPs). Using transcriptional reporters, we confirmed that these genes are induced by ß-lactams in a σP-dependent manner. These genes were deleted individually or in various combinations to determine their role in resistance to a subset of ß-lactams, including ampicillin, methicillin, cephalexin, and cephalothin. We found that different combinations of ß-lactamases and PBPs are involved in resistance to different ß-lactams. Our data show that B. thuringiensis utilizes a suite of enzymes to protect itself from ß-lactam antibiotics. IMPORTANCE Antimicrobial resistance is major concern for public health. ß-Lactams remain an important treatment option for many diseases. However, the spread of ß-lactam resistance continues to rise. Many pathogens acquire antibiotic resistance from environmental bacteria. Thus, understanding ß-lactam resistance in environmental strains may provide insights into additional mechanisms of antibiotic resistance. Here, we describe how a single regulatory system, σP, in B. thuringiensis controls expression of multiple genes involved in resistance to ß-lactams. Our findings indicate that some of these genes are partially redundant. Our data also suggest that the large number of genes controlled by σP results in increased resistance to a wider range of ß-lactam classes than any single gene could provide.


Asunto(s)
Bacillus thuringiensis , Factor sigma , Antibacterianos/farmacología , Bacillus thuringiensis/genética , Regulón , Factor sigma/genética , Factor sigma/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología
3.
Nat Commun ; 10(1): 5383, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772204

RESUMEN

ISG15 is an interferon-stimulated, ubiquitin-like protein, with anti-viral and anti-bacterial activity. Here, we map the endogenous in vivo ISGylome in the liver following Listeria monocytogenes infection by combining murine models of reduced or enhanced ISGylation with quantitative proteomics. Our method identifies 930 ISG15 sites in 434 proteins and also detects changes in the host ubiquitylome. The ISGylated targets are enriched in proteins which alter cellular metabolic processes, including upstream modulators of the catabolic and antibacterial pathway of autophagy. Computational analysis of substrate structures reveals that a number of ISG15 modifications occur at catalytic sites or dimerization interfaces of enzymes. Finally, we demonstrate that animals and cells with enhanced ISGylation have increased basal and infection-induced autophagy through the modification of mTOR, WIPI2, AMBRA1, and RAB7. Taken together, these findings ascribe a role of ISGylation to temporally reprogram organismal metabolism following infection through direct modification of a subset of enzymes in the liver.


Asunto(s)
Autofagia/fisiología , Citocinas/metabolismo , Listeriosis/metabolismo , Acetilación , Animales , Citocinas/genética , Listeria monocytogenes/patogenicidad , Listeriosis/patología , Hígado/metabolismo , Hígado/microbiología , Lisina/metabolismo , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA