Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675156

RESUMEN

Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p < 0.001), increased mitochondrial reactive oxygen species (ROS) production (1.83-fold increase, p < 0.001) and reduced mitophagy (9.6-fold decrease, p < 0.01). An increase in protein expression of optic atrophy protein 1 (OPA1; 2.1-fold increase, p < 0.05) and a converse decrease in expression of dynamin-related protein 1 (DRP1; 1.5-fold decrease, p < 0.05), two crucial proteins required for the mitochondrial fusion and fission process, respectively, were noted. Furthermore, the phosphorylation of DRP1 Ser637 was increased in the cytoplasm of calcified VSMCs (5.50-fold increase), suppressing mitochondrial translocation of DRP1. Additionally, calcified VSMCs showed enhanced expression of p53 (2.5-fold increase, p < 0.05) and ß-galactosidase activity (1.8-fold increase, p < 0.001), the cellular senescence markers. siRNA-mediated p53 knockdown reduced calcium deposition (8.1-fold decrease, p < 0.01), mitochondrial length (3.0-fold decrease, p < 0.001) and ß-galactosidase activity (2.6-fold decrease, p < 0.001), with concomitant mitophagy induction (3.1-fold increase, p < 0.05). Reduced OPA1 (4.1-fold decrease, p < 0.05) and increased DRP1 protein expression (2.6-fold increase, p < 0.05) with decreased phosphorylation of DRP1 Ser637 (3.20-fold decrease, p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function.


Asunto(s)
Dinámicas Mitocondriales , Músculo Liso Vascular , Calcificación Vascular , Humanos , beta-Galactosidasa/metabolismo , Células Cultivadas , Dinámicas Mitocondriales/genética , Dinámicas Mitocondriales/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo
2.
Am J Physiol Endocrinol Metab ; 320(2): E359-E378, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33284094

RESUMEN

Cold- and diet-induced recruitment of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT) are dynamic processes, and the recruited state attained is a state of dynamic equilibrium, demanding continuous stimulation to be maintained. An involvement of macrophages, classical proinflammatory (M1) or alternatively activated anti-inflammatory (M2), is presently discussed as being an integral part of these processes. If these macrophages play a mediatory role in the recruitment process, such an involvement would have to be maintained in the recruited state. We have, therefore, investigated whether the recruited state of these tissues is associated with macrophage accretion or attrition. We found no correlation (positive or negative) between total UCP1 mRNA levels (as a measure of recruitment) and proinflammatory macrophages in any adipose depot. We found that in young chow-fed mice, cold-induced recruitment correlated with accretion of anti-inflammatory macrophages; however, such a correlation was not seen when cold-induced recruitment was studied in diet-induced obese mice. Furthermore, the anti-inflammatory macrophage accretion was mediated via ß1/ß2-adrenergic receptors; yet, in their absence, and thus in the absence of macrophage accretion, recruitment proceeded normally. We thus conclude that the classical recruited state in BAT and inguinal (brite/beige) WAT is not paralleled by macrophage accretion or attrition. Our results make mediatory roles for macrophages in the recruitment process less likely.NEW & NOTEWORTHY A regulatory or mediatory role-positive or negative-for macrophages in the recruitment of brown adipose tissue is presently discussed. As the recruited state in the tissue is a dynamic process, maintenance of the recruited state would need persistent alterations in macrophage complement. Contrary to this expectation, we demonstrate here an absence of alterations in macrophage complement in thermogenically recruited brown-or brite/beige-adipose tissues. Macrophage regulation of thermogenic capacity is thus less likely.


Asunto(s)
Tejido Adiposo Beige/fisiología , Tejido Adiposo Pardo/fisiología , Macrófagos/fisiología , Receptores Adrenérgicos beta 1/fisiología , Receptores Adrenérgicos beta 2/fisiología , Termogénesis , Tejido Adiposo Beige/citología , Tejido Adiposo Pardo/citología , Animales , Dieta/efectos adversos , Regulación de la Expresión Génica , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Am J Physiol Endocrinol Metab ; 316(5): E729-E740, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30807213

RESUMEN

The attractive tenet that recruitment and activation of brown adipose tissue (BAT) and uncoupling protein 1 (UCP1) could counteract the development of obesity and its comorbidities in humans has been experimentally corroborated mainly by experiments demonstrating that UCP1-ablated mice on a C57Bl/6 background (exempt from thermal stress) become more obese when fed a high-fat diet. However, concerns may be raised that this outcome of UCP1 ablation is restricted to this very special inbred and particularly obesity-prone mouse strain. Therefore, we have examined to which degree UCP1 ablation has similar metabolic effects in a mouse strain known to be obesity resistant: the 129S strain. For this, male 129S2/sv or 129SV/Pas mice and corresponding UCP1-knockout mice were fed chow or a high-fat or a cafeteria diet for 4 wk. The absence of UCP1 augmented obesity (weight gain, body fat mass, %body fat, fat depot size) in high-fat diet- and cafeteria-fed mice, with a similar or lower food intake, indicating that, when present, UCP1 indeed decreases metabolic efficiency. The increased obesity was due to a decrease in energy expenditure. The consumption of a high-fat or cafeteria diet increased total BAT UCP1 protein levels in wild-type mice, and correspondingly, high-fat diet and cafeteria diet-fed mice demonstrated increased norepinephrine-induced oxygen consumption. There was a positive correlation between body fat and total BAT UCP1 protein content. No evidence for diet-induced adrenergic thermogenesis was found in UCP1-ablated mice. Thus, the obesity-reducing effect of UCP1 is not restricted to a particular, and perhaps not representative, mouse strain.


Asunto(s)
Dieta Alta en Grasa , Obesidad/genética , Termogénesis/genética , Proteína Desacopladora 1/genética , Tejido Adiposo , Tejido Adiposo Pardo/metabolismo , Agonistas alfa-Adrenérgicos/farmacología , Animales , Ingestión de Alimentos , Metabolismo Energético/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Norepinefrina/farmacología , Obesidad/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/metabolismo , Aumento de Peso
4.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38756069

RESUMEN

Alström syndrome (AS), a multisystem disorder caused by biallelic ALMS1 mutations, features major early morbidity and mortality due to cardiac complications. The latter are biphasic, including infantile dilated cardiomyopathy and distinct adult-onset cardiomyopathy, and poorly understood. We assessed cardiac function of Alms1 knockout (KO) mice by echocardiography. Cardiac function was unaltered in Alms1 global KO mice of both sexes at postnatal day 15 (P15) and 8 weeks. At 23 weeks, female - but not male - KO mice showed increased left atrial area and decreased isovolumic relaxation time, consistent with early restrictive cardiomyopathy, as well as reduced ejection fraction. No histological or transcriptional changes were seen in myocardium of 23-week-old female Alms1 global KO mice. Female mice with Pdgfra-Cre-driven Alms1 deletion in cardiac fibroblasts and in a small proportion of cardiomyocytes did not recapitulate the phenotype of global KO at 23 weeks. In conclusion, only female Alms1-deficient adult mice show echocardiographic evidence of cardiac dysfunction, consistent with the cardiomyopathy of AS. The explanation for sexual dimorphism remains unclear but might involve metabolic or endocrine differences between sexes.


Asunto(s)
Síndrome de Alstrom , Cardiomiopatías , Ecocardiografía , Ratones Noqueados , Animales , Femenino , Masculino , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/patología , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Síndrome de Alstrom/complicaciones , Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Ratones , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fenotipo , Caracteres Sexuales
5.
Mol Metab ; 84: 101933, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583571

RESUMEN

OBJECTIVE: Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout. METHODS: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. RESULTS: Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression. CONCLUSIONS: Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy.


Asunto(s)
Síndrome de Alstrom , Células Madre Mesenquimatosas , Ratones Noqueados , Animales , Ratones , Masculino , Femenino , Células Madre Mesenquimatosas/metabolismo , Síndrome de Alstrom/metabolismo , Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Resistencia a la Insulina , Hígado Graso/metabolismo , Hígado Graso/genética , Obesidad/metabolismo , Obesidad/genética , Hiperfagia/metabolismo , Hiperfagia/genética , Tejido Adiposo/metabolismo , Ratones Endogámicos C57BL , Composición Corporal
6.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873427

RESUMEN

Background: Alström Syndrome (AS), a multi-system disease caused by mutations in the ALMS1 gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective Alms1 knockout in mesenchymal cells including preadipocytes to those of global Alms1 knockout. Methods: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα -Cre driver was used to abrogate Alms1 function selectively in mesenchymal stem cells (MSCs) and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα + Alms1 -KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. Results: Global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα - cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfr α expression. Conclusions: Mesenchymal deletion of Alms1 recapitulates the metabolic features of AS, including severe fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. AS should be regarded as a forme fruste of lipodystrophy. Therapies should prioritise targeting positive energy balance.

7.
Elife ; 122023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722855

RESUMEN

Mitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in MFN2, encoding mitofusin 2. How the resulting selective form of mitochondrial dysfunction leads to tissue- and adipose depot-specific growth abnormalities and systemic biochemical perturbation is unknown. To address this, Mfn2R707W/R707W knock-in mice were generated and phenotyped on chow and high fat diets. Electron microscopy revealed adipose-specific mitochondrial morphological abnormalities. Oxidative phosphorylation measured in isolated mitochondria was unperturbed, but the cellular integrated stress response was activated in adipose tissue. Fat mass and distribution, body weight, and systemic glucose and lipid metabolism were unchanged, however serum leptin and adiponectin concentrations, and their secretion from adipose explants were reduced. Pharmacological induction of the integrated stress response in wild-type adipocytes also reduced secretion of leptin and adiponectin, suggesting an explanation for the in vivo findings. These data suggest that the p.Arg707Trp MFN2 mutation selectively perturbs mitochondrial morphology and activates the integrated stress response in adipose tissue. In mice, this does not disrupt most adipocyte functions or systemic metabolism, whereas in humans it is associated with pathological adipose remodelling and metabolic disease. In both species, disproportionate effects on leptin secretion may relate to cell autonomous induction of the integrated stress response.


Asunto(s)
Resistencia a la Insulina , Lipodistrofia , Humanos , Animales , Ratones , Leptina/metabolismo , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Hidrolasas/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Mitocondrias/metabolismo
8.
Mol Metab ; 40: 101020, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32439336

RESUMEN

OBJECTIVE: Insulin signalling via phosphoinositide 3-kinase (PI3K) requires PIK3R1-encoded regulatory subunits. C-terminal PIK3R1 mutations cause SHORT syndrome, as well as lipodystrophy and insulin resistance (IR), surprisingly without fatty liver or metabolic dyslipidaemia. We sought to investigate this discordance. METHODS: The human pathogenic Pik3r1 Y657∗ mutation was knocked into mice by homologous recombination. Growth, body composition, bioenergetic and metabolic profiles were investigated on chow and high-fat diet (HFD). We examined adipose and liver histology, and assessed liver responses to fasting and refeeding transcriptomically. RESULTS: Like humans with SHORT syndrome, Pik3r1WT/Y657∗ mice were small with severe IR, and adipose expansion on HFD was markedly reduced. Also as in humans, plasma lipid concentrations were low, and insulin-stimulated hepatic lipogenesis was not increased despite hyperinsulinemia. At odds with lipodystrophy, however, no adipocyte hypertrophy nor adipose inflammation was found. Liver lipogenic gene expression was not significantly altered, and unbiased transcriptomics showed only minor changes, including evidence of reduced endoplasmic reticulum stress in the fed state and diminished Rictor-dependent transcription on fasting. Increased energy expenditure, which was not explained by hyperglycaemia nor intestinal malabsorption, provided an alternative explanation for the uncoupling of IR from dyslipidaemia. CONCLUSIONS: Pik3r1 dysfunction in mice phenocopies the IR and reduced adiposity without lipotoxicity of human SHORT syndrome. Decreased adiposity may not reflect bona fide lipodystrophy, but rather, increased energy expenditure, and we suggest that further study of brown adipose tissue in both humans and mice is warranted.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/genética , Trastornos del Crecimiento/metabolismo , Hipercalcemia/metabolismo , Resistencia a la Insulina/genética , Enfermedades Metabólicas/metabolismo , Nefrocalcinosis/metabolismo , Tejido Adiposo Pardo/metabolismo , Adiposidad , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Dieta Alta en Grasa , Dislipidemias/genética , Metabolismo Energético/genética , Hígado Graso/metabolismo , Trastornos del Crecimiento/genética , Hipercalcemia/genética , Inflamación/metabolismo , Insulina/metabolismo , Lipogénesis , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Nefrocalcinosis/genética , Obesidad/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
9.
Mol Aspects Med ; 68: 42-59, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31323252

RESUMEN

A reduction in the thermogenic activity of brown adipose tissue (BAT) is presently discussed as a possible determinant for the development of obesity in humans. One group of endogenous factors that could potentially affect BAT activity is the glucocorticoids (e.g. cortisol). We analyse here studies examining the effects of alterations in glucocorticoid signaling on BAT recruitment and thermogenic capacity. We find that irrespective of which manipulation of glucocorticoid signaling is examined, a seemingly homogeneous picture of lowered thermogenic capacity due to glucocorticoid stimulation is apparently obtained: e.g. lowered uncoupling protein 1 (UCP1) protein levels per mg protein, and an increased lipid accumulation in BAT. However, further analyses generally indicate that these effects result from a dilution effect rather than a true decrease in total capacity; the tissue may thus be said to be in a state of pseudo-atrophy. However, under conditions of very low physiological stimulation of BAT, glucocorticoids may truly inhibit Ucp1 gene expression and consequently lower total UCP1 protein levels, but the metabolic effects of this reduction are probably minor. It is thus unlikely that glucocorticoids affect organismal metabolism and induce the development of obesity through alterations of BAT activity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Glucocorticoides/metabolismo , Termogénesis , Animales , Transporte Biológico , Glucocorticoides/química , Humanos , Receptores de Glucocorticoides/metabolismo , Transducción de Señal
10.
Cell Rep ; 27(6): 1686-1698.e5, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067456

RESUMEN

An excess of glucocorticoids leads to the development of obesity in both mice and humans, but the mechanism for this is unknown. Here, we determine the extent to which decreased BAT thermogenic capacity (as a result of glucocorticoid treatment) contributes to the development of obesity. Contrary to previous suggestions, we show that only in mice housed at thermoneutrality (30°C) does corticosterone treatment reduce total BAT UCP1 protein. This reduction is reflected in reduced brown adipocyte cellular and mitochondrial UCP1-dependent respiration. However, glucocorticoid-induced obesity develops to the same extent in animals housed at 21°C and 30°C, whereas total BAT UCP1 protein levels differ 100-fold between the two groups. In corticosterone-treated wild-type and UCP1 knockout mice housed at 30°C, obesity also develops to the same extent. Thus, our results demonstrate that the development of glucocorticoid-induced obesity is not caused by a decreased UCP1-dependent thermogenic capacity.


Asunto(s)
Glucocorticoides/efectos adversos , Obesidad/etiología , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Pardo/metabolismo , Adiposidad , Animales , Respiración de la Célula , Corticosterona/efectos adversos , Regulación hacia Abajo , Conducta Alimentaria , Ratones , Mitocondrias/metabolismo , Obesidad/patología , Fenotipo , Temperatura , Transcripción Genética
11.
Nat Med ; 21(4): 389-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25774848

RESUMEN

Brown adipose tissue (BAT) acts in mammals as a natural defense system against hypothermia, and its activation to a state of increased energy expenditure is believed to protect against the development of obesity. Even though the existence of BAT in adult humans has been widely appreciated, its cellular origin and molecular identity remain elusive largely because of high cellular heterogeneity within various adipose tissue depots. To understand the nature of adult human brown adipocytes at single cell resolution, we isolated clonally derived adipocytes from stromal vascular fractions of adult human BAT from two individuals and globally analyzed their molecular signatures. We used RNA sequencing followed by unbiased genome-wide expression analyses and found that a population of uncoupling protein 1 (UCP1)-positive human adipocytes possessed molecular signatures resembling those of a recruitable form of thermogenic adipocytes (that is, beige adipocytes). In addition, we identified molecular markers that were highly enriched in UCP1-positive human adipocytes, a set that included potassium channel K3 (KCNK3) and mitochondrial tumor suppressor 1 (MTUS1). Further, we functionally characterized these two markers using a loss-of-function approach and found that KCNK3 and MTUS1 were required for beige adipocyte differentiation and thermogenic function. The results of this study present new opportunities for human BAT research, such as facilitating cell-based disease modeling and unbiased screens for thermogenic regulators.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/citología , Canales Iónicos/genética , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Proteínas Supresoras de Tumor/genética , Adulto , Animales , Proteínas Portadoras/genética , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Interferencia de ARN , Termogénesis/fisiología , Proteína Desacopladora 1
12.
Cell Rep ; 9(5): 1584-1593, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25466254

RESUMEN

Obesity develops when energy intake chronically exceeds energy expenditure. Because brown adipose tissue (BAT) dissipates energy in the form of heat, increasing energy expenditure by augmenting BAT-mediated thermogenesis may represent an approach to counter obesity and its complications. The ability of BAT to dissipate energy is dependent on expression of mitochondrial uncoupling protein 1 (UCP1). To facilitate the identification of pharmacological modulators of BAT UCP1 levels, which may have potential as antiobesity medications, we developed a transgenic model in which luciferase activity faithfully mimics endogenous UCP1 expression and its response to physiologic stimuli. Phenotypic screening of a library using cells derived from this model yielded a small molecule that increases UCP1 expression in brown fat cells and mice. Upon adrenergic stimulation, compound-treated mice showed increased energy expenditure. These tools offer an opportunity to identify pharmacologic modulators of UCP1 expression and uncover regulatory pathways that impact BAT-mediated thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Activación Transcripcional/efectos de los fármacos , Animales , Fármacos Antiobesidad/farmacología , Células Cultivadas , Evaluación Preclínica de Medicamentos , Metabolismo Energético , Expresión Génica , Canales Iónicos/genética , Masculino , Ratones Transgénicos , Proteínas Mitocondriales/genética , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Transducción de Señal , Termogénesis , Proteína Desacopladora 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA