Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(8): 086704, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898116

RESUMEN

We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations in the weakly coupled spin-1/2 Heisenberg layers of the molecular-based bulk material [Cu(pz)_{2}(2-HOpy)_{2}](PF_{6})_{2}. At zero field, a transition to long-range order occurs at 1.38 K, caused by a weak intrinsic easy-plane anisotropy and an interlayer exchange of J^{'}/k_{B}≈1 mK. Because of the moderate intralayer exchange coupling of J/k_{B}=6.8 K, the application of laboratory magnetic fields induces a substantial XY anisotropy of the spin correlations. Crucially, this provides a significant BKT regime, as the tiny interlayer exchange J^{'} only induces 3D correlations upon close approach to the BKT transition with its exponential growth in the spin-correlation length. We employ nuclear magnetic resonance measurements to probe the spin correlations that determine the critical temperatures of the BKT transition as well as that of the onset of long-range order. Further, we perform stochastic series expansion quantum Monte Carlo simulations based on the experimentally determined model parameters. Finite-size scaling of the in-plane spin stiffness yields excellent agreement of critical temperatures between theory and experiment, providing clear evidence that the nonmonotonic magnetic phase diagram of [Cu(pz)_{2}(2-HOpy)_{2}](PF_{6})_{2} is determined by the field-tuned XY anisotropy and the concomitant BKT physics.

2.
Phys Rev Lett ; 108(22): 227001, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23003641

RESUMEN

We study the Josephson current 0-π transition of a quantum dot tuned to the Kondo regime. The physics can be quantitatively captured by the numerically exact continuous time quantum Monte Carlo method applied to the single-impurity Anderson model with Bardeen-Cooper-Schrieffer superconducting leads. For a comparison to an experiment, the tunnel couplings are determined by fitting the normal-state linear conductance. Excellent agreement for the dependence of the critical Josephson current on the level energy is achieved. For increased tunnel couplings the Kondo scale becomes comparable to the superconducting gap, and the regime of the strongest competition between superconductivity and Kondo correlations is reached; we predict the gate voltage dependence of the critical current in this regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA