Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599103

RESUMEN

Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.


Asunto(s)
Proteína 2 Inhibidora de la Diferenciación/genética , Transcripción Genética/genética , Animales , Epilepsia del Lóbulo Temporal/genética , Ratones , Fibras Musgosas del Hipocampo/fisiología , Neurogénesis/genética , Ratas
2.
Hum Mol Genet ; 29(4): 674-688, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31943010

RESUMEN

Huntington's disease (HD) is caused by an expansion of a poly glutamine (polyQ) stretch in the huntingtin protein (HTT) that is necessary to cause pathology and formation of HTT aggregates. Here we ask whether expanded polyQ is sufficient to cause pathology and aggregate formation. By addressing the sufficiency question, one can identify cellular processes and structural parameters that influence HD pathology and HTT subcellular behavior (i.e. aggregation state and subcellular location). Using Drosophila, we compare the effects of expressing mutant full-length human HTT (fl-mHTT) to the effects of mutant human HTTexon1 and to two commonly used synthetic fragments, HTT171 and shortstop (HTT118). Expanded polyQ alone is not sufficient to cause inclusion formation since full-length HTT and HTTex1 with expanded polyQ are both toxic although full-length HTT remains diffuse while HTTex1 forms inclusions. Further, inclusions are not sufficient to cause pathology since HTT171-120Q forms inclusions but is benign and co-expression of HTT171-120Q with non-aggregating pathogenic fl-mHTT recruits fl-mHTT to aggregates and rescues its pathogenicity. Additionally, the influence of sequences outside the expanded polyQ domain is revealed by finding that small modifications to the HTT118 or HTT171 fragments can dramatically alter their subcellular behavior and pathogenicity. Finally, mutant HTT subcellular behavior is strongly modified by different cell and tissue environments (e.g. fl-mHTT appears as diffuse nuclear in one tissue and diffuse cytoplasmic in another but toxic in both). These observations underscore the importance of cellular and structural context for the interpretation and comparison of experiments using different fragments and tissues to report the effects of expanded polyQ.


Asunto(s)
Núcleo Celular/patología , Drosophila melanogaster/crecimiento & desarrollo , Proteína Huntingtina/genética , Mutación , Neuronas/patología , Péptidos/genética , Tráquea/patología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Cuerpos de Inclusión , Masculino , Neuronas/metabolismo , Tráquea/metabolismo
3.
Dev Biol ; 445(1): 37-53, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30539716

RESUMEN

Analysis of mutants that affect formation and function of the Drosophila larval neuromuscular junction (NMJ) has provided valuable insight into genes required for neuronal branching and synaptic growth. We report that NMJ development in Drosophila requires both the Drosophila ortholog of FNDC3 genes; CG42389 (herein referred to as miles to go; mtgo), and CCT3, which encodes a chaperonin complex subunit. Loss of mtgo function causes late pupal lethality with most animals unable to escape the pupal case, while rare escapers exhibit an ataxic gait and reduced lifespan. NMJs in mtgo mutant larvae have dramatically reduced branching and growth and fewer synaptic boutons compared with control animals. Mutant larvae show normal locomotion but display an abnormal self-righting response and chemosensory deficits that suggest additional functions of mtgo within the nervous system. The pharate lethality in mtgo mutants can be rescued by both low-level pan- and neuronal-, but not muscle-specific expression of a mtgo transgene, supporting a neuronal-intrinsic requirement for mtgo in NMJ development. Mtgo encodes three similar proteins whose domain structure is most closely related to the vertebrate intracellular cytosolic membrane-anchored fibronectin type-III domain-containing protein 3 (FNDC3) protein family. Mtgo physically and genetically interacts with Drosophila CCT3, which encodes a subunit of the TRiC/CCT chaperonin complex required for maturation of actin, tubulin and other substrates. Drosophila larvae heterozygous for a mutation in CCT3 that reduces binding between CCT3 and MTGO also show abnormal NMJ development similar to that observed in mtgo null mutants. Hence, the intracellular FNDC3-ortholog MTGO and CCT3 can form a macromolecular complex, and are both required for NMJ development in Drosophila.


Asunto(s)
Chaperonina con TCP-1/metabolismo , Proteínas de Drosophila/metabolismo , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/metabolismo , Alelos , Animales , Axones/fisiología , Chaperonina con TCP-1/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Larva , Mutación , Unión Neuromuscular/enzimología , Unión Neuromuscular/genética , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
4.
Hum Mol Genet ; 24(4): 913-25, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305076

RESUMEN

Although Huntington's disease is caused by the expansion of a CAG triplet repeat within the context of the 3144-amino acid huntingtin protein (HTT), studies reveal that N-terminal fragments of HTT containing the expanded PolyQ region can be produced by proteolytic processing and/or aberrant splicing. N-terminal HTT fragments are also prevalent in postmortem tissue, and expression of some of these fragments in model organisms can cause pathology. This has led to the hypothesis that N-terminal peptides may be critical modulators of disease pathology, raising the possibility that targeting aberrant splicing or proteolytic processing may present attractive therapeutic targets. However, many factors can contribute to pathology, including genetic background and differential expression of transgenes, in addition to intrinsic differences between fragments and their cellular effects. We have used Drosophila as a model system to determine the relative toxicities of different naturally occurring huntingtin fragments in a system in which genetic background, transgene expression levels and post-translational proteolytic processing can be controlled. These studies reveal that among the naturally occurring N-terminal HTT peptides, the exon 1 peptide is exceptionally pathogenic and exhibits unique structural and biophysical behaviors that do not appear to be incremental changes compared with other fragments. If this proves correct, efforts to specifically reduce the levels of exon 1 peptides or to target toxicity-influencing post-translational modifications that occur with the exon 1 context are likely to have the greatest impact on pathology.


Asunto(s)
Exones , Enfermedad de Huntington/genética , Proteínas Asociadas a Microtúbulos/genética , Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila , Expresión Génica , Humanos , Proteína Huntingtina , Masculino , Proteínas Asociadas a Microtúbulos/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Agregación Patológica de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteolisis
5.
PLoS Biol ; 12(10): e1001964, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25291190

RESUMEN

Courtship is a widespread behavior in which one gender conveys to the other a series of cues about their species identity, gender, and suitability as mates. In many species, females decode these male displays and either accept or reject them. Despite the fact that courtship has been investigated for a long time, the genes and circuits that allow females to generate these mutually exclusive responses remain largely unknown. Here, we provide evidence that the Krüppel-like transcription factor datilógrafo (dati) is required for proper locomotion and courtship acceptance in adult Drosophila females. dati mutant females are completely unable to decode male courtship and almost invariably reject males. Molecular analyses reveal that dati is broadly expressed in the brain and its specific removal in excitatory cholinergic neurons recapitulates the female courtship behavioral phenotype but not the locomotor deficits, indicating that these are two separable functions. Clonal analyses in female brains identified three discrete foci where dati is required to generate acceptance. These include neurons around the antennal lobe, the lateral horn, and the posterior superior lateral protocerebrum. Together, these results show that dati is required to organize and maintain a relatively simple excitatory circuit in the brain that allows females to either accept or reject courting males.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Conducta Sexual Animal/fisiología , Factores de Transcripción/metabolismo , Animales , Encéfalo/metabolismo , Mapeo Cromosómico , Cromosomas de Insectos , Femenino , Locomoción , Masculino , Cuerpos Pedunculados
6.
Proc Natl Acad Sci U S A ; 111(47): 16889-94, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385587

RESUMEN

Although dominant gain-of-function triplet repeat expansions in the Huntingtin (HTT) gene are the underlying cause of Huntington disease (HD), understanding the normal functions of nonmutant HTT protein has remained a challenge. We report here findings that suggest that HTT plays a significant role in selective autophagy. Loss of HTT function in Drosophila disrupts starvation-induced autophagy in larvae and conditional knockout of HTT in the mouse CNS causes characteristic cellular hallmarks of disrupted autophagy, including an accumulation of striatal p62/SQSTM1 over time. We observe that specific domains of HTT have structural similarities to yeast Atg proteins that function in selective autophagy, and in particular that the C-terminal domain of HTT shares structural similarity to yeast Atg11, an autophagic scaffold protein. To explore possible functional similarity between HTT and Atg11, we investigated whether the C-terminal domain of HTT interacts with mammalian counterparts of yeast Atg11-interacting proteins. Strikingly, this domain of HTT coimmunoprecipitates with several key Atg11 interactors, including the Atg1/Unc-51-like autophagy activating kinase 1 kinase complex, autophagic receptor proteins, and mammalian Atg8 homologs. Mutation of a phylogenetically conserved WXXL domain in a C-terminal HTT fragment reduces coprecipitation with mammalian Atg8 homolog GABARAPL1, suggesting a direct interaction. Collectively, these data support a possible central role for HTT as an Atg11-like scaffold protein. These findings have relevance to both mechanisms of disease pathogenesis and to therapeutic intervention strategies that reduce levels of both mutant and normal HTT.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila , Proteína Huntingtina , Ratones , Proteínas Asociadas a Microtúbulos/genética
7.
Hum Mol Genet ; 23(11): 2995-3007, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24436303

RESUMEN

Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for HD.


Asunto(s)
Carbazoles/administración & dosificación , Proteínas de Drosophila/antagonistas & inhibidores , Inhibidores Enzimáticos/administración & dosificación , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/enzimología , Sirtuina 1/antagonistas & inhibidores , Sirtuinas/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células PC12 , Ratas , Ratas Sprague-Dawley , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
8.
Cell Biol Int ; 40(6): 696-707, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27006187

RESUMEN

Ezrin-Radixin-Moesin proteins are highly conserved, actin-binding cytoskeletal proteins that play an essential role in microvilli formation, T-cell activation, and tumor metastasis by linking actin filaments to the plasma membrane. Recent studies demonstrated that the only Ezrin-Radixin-Moesin protein of Drosophila melanogaster, Moesin, is involved in mitotic spindle function through stabilizing cell shape and microtubules at the cell cortex. We previously observed that Moesin localizes to the mitotic spindle; hence, we tested for the biological significance of this surprising localization and investigated whether it plays a direct role in spindle function. To separate the cortical and spindle functions of Moesin during mitosis we combined cell biological and genetic methods. We used early Drosophila embryos, in which mitosis occurs in the absence of a cell cortex, and found in vivo evidence for the direct requirement of Moesin in mitotic spindle assembly and function. We also found that the accumulation of Moesin precedes the construction of the microtubule spindle, and the fusiform structure formed by Moesin persists even after the microtubules have disassembled.


Asunto(s)
Proteínas de la Membrana/metabolismo , Huso Acromático/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Ciclo Celular/fisiología , Forma de la Célula/fisiología , Citoplasma/metabolismo , Drosophila melanogaster , Proteínas de la Membrana/genética , Microtúbulos/metabolismo , Mitosis/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
9.
J Neurogenet ; 29(1): 23-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25518733

RESUMEN

The muscle of Lawrence (MOL) is a male-specific muscle present in the abdomen of some adult Drosophila species. Formation of the MOL depends on innervation by motoneurons that express fruitless, a neural male determinant. Drosophila melanogaster males carry a pair of MOLs in the 5th abdominal segment, whereas D. subobscura males carry a pair in both the 5th and 4th segments. We hypothesized that the fru gene of D. subobscura but not that of D. melanogaster contains a cis element that directs the formation of the additional pair of MOLs. Successively extended 5' DNA fragments to the P1 promoter of D. subobscura or the corresponding fragments that are chimeric (i.e., containing both melanogaster and subobscura elements) were introduced into D. melanogaster and tested for their ability to induce the MOL to locate the hypothetical cis element. We found that a 1.5-2-kb genomic fragment located 4-6-kb upstream of the P1 promoter in D. subobscura but not that of D. melanogaster permits MOL formation in females, provided this fragment is grafted to the distal ∼4-kb segment from D. melanogaster, demonstrating that this genomic fragment of D. subobscura contains a cis element for the MOL induction.


Asunto(s)
Músculos Abdominales/metabolismo , Proteínas de Drosophila/genética , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Drosophila melanogaster , Femenino , Masculino , Factores Sexuales
10.
PNAS Nexus ; 3(5): pgae174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711810

RESUMEN

Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.

11.
Res Sq ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38343805

RESUMEN

Pre-Pulse Inhibition (PPI) is a neural process where suppression of a startle response is elicited by preceding the startling stimulus (Pulse) with a weak, non-startling one (Pre-Pulse). Defective PPI is widely employed as a behavioural endophenotype in humans and mammalian disorder-relevant models for neuropsychiatric disorders. We have developed a user-friendly, semi-automated, high-throughput-compatible Drosophila light-off jump response PPI paradigm, with which we demonstrate that PPI, with similar parameters measured in mammals, exists in adults of this model organism. We report that Drosophila PPI is affected by reduced expression of Dysbindin and both reduced and increased expression of Nmdar1 (N-methyl-D-aspartate receptor 1), perturbations associated with schizophrenia. Studying the biology of PPI in an organism that offers a plethora of genetic tools and a complex and well characterized connectome will greatly facilitate our efforts to gain deeper insight into the aetiology of human mental disorders, while reducing the need for mammalian models.

12.
Gen Comp Endocrinol ; 191: 137-45, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23770020

RESUMEN

Five neuropeptide genes are classified in the FMRF-related (FaRP) group: the Fmrf, dromyosuppressin (Dms), drosulfakinin (Dsk), neuropeptide F (npf) and short neuropeptide F (sNPF) genes coding for 8, 1, 2, 1 and 4 peptides, respectively. In order to compare their effects on the locomotor activity of Drosophila adults, we made RNAi knockdown of the peptides and their specific receptor genes. In addition, we constructed Gal4 drivers with three distinct parts of the Fmrf gene's 5' regulatory sequence (RS8-Gal4, RS11-Gal4, RS17-Gal4), and used them to ablate FMRF-positive neurons inducing apoptosis by expressing the reaper (rpr) gene. We examined the locomotor activity of flies by measuring the mean velocity of movement (MVM) following repeated air-puffs. Locomotor activity was decreased by RNAi knockdown induced in the CNS by the elav-Gal4 driver. According to the MVM curve profiles, RNAi knockdown most effectively decreased the velocity when the DmsR-1 and DmsR-2 genes were silenced together (DmsR-1-RNAi/elav-Gal4; DmsR-2-RNAi/+). Similar effect was observed in Dsk-RNAi/ elav-Gal4; DskR-2-RNAi/+, while moderate effects were found in three other combinations (Fmrf-RNAi/elav-Gal4; FR-RNAi/+, Dms-RNAi/ elav-Gal4;DmsR-2-RNAi/+, CCKLR-17D1-RNAi/elav-Gal4; CCKLR-17D3-RNAi/+), and weak effect in DmsR-2-RNAi/elav-Gal4; DmsR-1-RNAi/+. Male and female flies were not different in this respect. In the cell ablation experiment, the MVM profiles of the female flies were different from the controls when the UAS-rpr transgene was driven by RS8-Gal4 or RS17-Gal4. The RS11-Gal4 and Fmrf-Gal4 drivers were ineffective. In the males only the RS17-Gal4 showed a weak effect. RNAi silencing of the FaRP and FaRP-receptor genes effectively decreased the startle-induced locomotor activity of flies. Ablation of FMRF-positive neurons by the RS8-Gal4 and/or RS17-Gal4 drivers also decreased the flies' activity.


Asunto(s)
FMRFamida/metabolismo , Actividad Motora/fisiología , Animales , Drosophila melanogaster , Femenino , Hormonas de Insectos/metabolismo , Masculino , Microscopía Confocal , Neuropéptidos/metabolismo , Interferencia de ARN
13.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37494033

RESUMEN

The accurate determination of allele frequencies is crucially important across a wide range of problems in genetics, such as developing population genetic models, making inferences from genome-wide association studies, determining genetic risk for diseases, as well as other scientific and medical applications. Furthermore, understanding how allele frequencies change over time in populations is central to ascertaining their evolutionary dynamics. We present a precise, efficient, and economical method (FREQ-Seq2) for quantifying the relative frequencies of different alleles at loci of interest in mixed population samples. Through the creative use of paired barcode sequences, we exponentially increased the throughput of the original FREQ-Seq method from 48 to 2,304 samples. FREQ-Seq2 can be targeted to specific genomic regions of interest, which are amplified using universal barcoded adapters to generate Illumina sequencing libraries. Our enhanced method, available as a kit along with open-source software for analyzing sequenced libraries, enables the detection and removal of errors that are undetectable in the original FREQ-Seq method as well as other conventional methods for allele frequency quantification. Finally, we validated the performance of our sequencing-based approach with a highly multiplexed set of control samples as well as a competitive evolution experiment in Escherichia coli and compare the latter to estimates derived from manual colony counting. Our analyses demonstrate that FREQ-Seq2 is flexible, inexpensive, and produces large amounts of data with low error, low noise, and desirable statistical properties. In summary, FREQ-Seq2 is a powerful method for quantifying allele frequency that provides a versatile approach for profiling mixed populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Frecuencia de los Genes , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
14.
PNAS Nexus ; 2(4): pgad088, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37077887

RESUMEN

Dentate granule cells (GCs) have been characterized as unilaterally projecting neurons within each hippocampus. Here, we describe a unique class, the commissural GCs, which atypically project to the contralateral hippocampus in mice. Although commissural GCs are rare in the healthy brain, their number and contralateral axon density rapidly increase in a rodent model of temporal lobe epilepsies. In this model, commissural GC axon growth appears together with the well-studied hippocampal mossy fiber sprouting and may be important for the pathomechanisms of epilepsy. Our results augment the current view on hippocampal GC diversity and demonstrate powerful activation of a commissural wiring program in the adult brain.

15.
Front Neurosci ; 16: 888362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117624

RESUMEN

Circuit formation is a defining characteristic of the developing brain. However, multiple lines of evidence suggest that circuit formation can also take place in adults, the mechanisms of which remain poorly understood. Here, we investigated the epilepsy-associated mossy fiber (MF) sprouting in the adult hippocampus and asked which cell surface molecules define its target specificity. Using single-cell RNAseq data, we found lack and expression of Pcdh11x in non-sprouting and sprouting neurons respectively. Subsequently, we used CRISPR/Cas9 genome editing to disrupt the Pcdh11x gene and characterized its consequences on sprouting. Although MF sprouting still developed, its target specificity was altered. New synapses were frequently formed on granule cell somata in addition to dendrites. Our findings shed light onto a key molecular determinant of target specificity in MF sprouting and contribute to understanding the molecular mechanism of adult brain rewiring.

16.
Front Mol Biosci ; 9: 963635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060241

RESUMEN

Actin, as an ancient and fundamental protein, participates in various cytoplasmic as well as nuclear functions in eukaryotic cells. Based on its manifold tasks in the nucleus, it is a reasonable assumption that the nuclear presence of actin is essential for the cell, and consequently, its nuclear localization is ensured by a robust system. However, today only a single nuclear import and a single nuclear export pathway is known which maintain the dynamic balance between cytoplasmic and nuclear actin pools. In our work, we tested the robustness of the nuclear import of actin, and investigated whether the perturbations of nuclear localization affect the viability of the whole organism. For this aim, we generated a genetic system in Drosophila, in which we rescued the lethal phenotype of the null mutation of the Actin5C gene with transgenes that express different derivatives of actin, including a Nuclear Export Signal (NES)-tagged isoform which ensures forced nuclear export of the protein. We also disrupted the SUMOylation site of actin, suggested earlier to be responsible for nuclear retention, and eliminated the activity of the single nuclear import factor dedicated to actin. We found that, individually, none of the above mentioned manipulations led to a notable reduction in nuclear actin levels and thus, fully rescued lethality. However, the NES tagging of actin, together with the knock out of its importin, significantly reduced the amount of nuclear actin and induced lethality, confirming that the presence of actin in the nucleus is essential, and thereby, over-secured. Supporting this, we identified novel nuclear importins specific to actin, which sheds light on the mechanism behind the robustness of nuclear localization of actin, and supports the idea of essentiality of its nuclear functions.

17.
J Innate Immun ; 14(4): 335-354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34864742

RESUMEN

Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in Drosophila ananassae after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.


Asunto(s)
Hemocitos , Avispas , Animales , Drosophila , Interacciones Huésped-Parásitos , Inmunidad Innata , Transcriptoma , Avispas/genética
18.
Exp Neurol ; 338: 113463, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32941796

RESUMEN

Poly-glutamine expansion near the N-terminus of the huntingtin protein (HTT) is the prime determinant of Huntington's disease (HD) pathology; however, post-translational modifications and protein context are also reported to influence poly-glutamine induced HD toxicity. The impact of phosphorylating serine 13/16 of mutant HTT (mHTT) on HD has been documented in cell culture and murine models. However, endogenous processing of the human protein in mammalian systems complicates the interpretations. Therefore, to study the impact of S13/16 phosphorylation on the subcellular behavior of HTT under a controlled genetic background with minimal proteolytic processing of the human protein, we employed Drosophila as the model system. We ectopically expressed full-length (FL) and exon1 fragment of human HTT with phosphomimetic and resistant mutations at serines 13 and 16 in different neuronal populations. Phosphomimetic mHTT aggravates and the phosphoresistant mutation ameliorates mHTT-induced toxicity in the context of both FL- and exon1- mHTT in Drosophila although in all cases FL appears less toxic than exon1. Our observations strongly indicate that the phosphorylation status of S13/16 can affect HD pathology in Drosophila and these residues can be potential targets for affecting HD pathogenesis.


Asunto(s)
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Serina/genética , Serina/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Humanos , Mutación , Neuronas/patología , Fosforilación , Procesamiento Proteico-Postraduccional
19.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475263

RESUMEN

Mutations in the voltage-gated sodium channel gene SCN1A are associated with human epilepsy disorders, but how most of these mutations alter channel properties and result in seizures is unknown. This study focuses on two different mutations occurring at one position within SCN1A R1648C (R-C) is associated with the severe disorder Dravet syndrome, and R1648H (R-H), with the milder disorder GEFS+. To explore how these different mutations contribute to distinct seizure disorders, Drosophila lines with the R-C or R-H mutation, or R1648R (R-R) control substitution in the fly sodium channel gene para were generated by CRISPR-Cas9 gene editing. The R-C and R-H mutations are homozygous lethal. Animals heterozygous for R-C or R-H mutations displayed reduced life spans and spontaneous and temperature-induced seizures not observed in R-R controls. Electrophysiological recordings from adult GABAergic neurons in R-C and R-H mutants revealed the appearance of sustained neuronal depolarizations and altered firing frequency that were exacerbated at elevated temperature. The only significant change observed in underlying sodium currents in both R-C and R-H mutants was a hyperpolarized deactivation threshold at room and elevated temperature compared with R-R controls. Since this change is constitutive, it is likely to interact with heat-induced changes in other cellular properties to result in the heat-induced increase in sustained depolarizations and seizure activity. Further, the similarity of the behavioral and cellular phenotypes in the R-C and R-H fly lines, suggests that disease symptoms of different severity associated with these mutations in humans could be due in large part to differences in genetic background.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Animales , Drosophila , Epilepsia/genética , Neuronas GABAérgicas , Humanos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Convulsiones/genética
20.
Autophagy ; 17(12): 4010-4028, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33779490

RESUMEN

Myotubularin (MTM) and myotubularin-related (MTMR) lipid phosphatases catalyze the removal of a phosphate group from certain phosphatidylinositol derivatives. Because some of these substrates are required for macroautophagy/autophagy, during which unwanted cytoplasmic constituents are delivered into lysosomes for degradation, MTM and MTMRs function as important regulators of the autophagic process. Despite its physiological and medical significance, the specific role of individual MTMR paralogs in autophagy control remains largely unexplored. Here we examined two Drosophila MTMRs, EDTP and Mtmr6, the fly orthologs of mammalian MTMR14 and MTMR6 to MTMR8, respectively, and found that these enzymes affect the autophagic process in a complex, condition-dependent way. EDTP inhibited basal autophagy, but did not influence stress-induced autophagy. In contrast, Mtmr6 promoted the process under nutrient-rich settings, but effectively blocked its hyperactivation in response to stress. Thus, Mtmr6 is the first identified MTMR phosphatase with dual, antagonistic roles in the regulation of autophagy, and shows conditional antagonism/synergism with EDTP in modulating autophagic breakdown. These results provide a deeper insight into the adjustment of autophagy.Abbreviations: Atg, autophagy-related; BDSC, Bloomington Drosophila Stock Center; DGRC, Drosophila Genetic Resource Center; EDTP, Egg-derived tyrosine phosphatase; FYVE, zinc finger domain from Fab1 (yeast ortholog of PIKfyve), YOTB, Vac1 (vesicle transport protein) and EEA1 cysteine-rich proteins; LTR, LysoTracker Red; MTM, myotubularin; MTMR, myotubularin-related; PI, phosphatidylinositol; Pi3K59F, Phosphotidylinositol 3 kinase 59F; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(3,5)P2, phosphatidylinositol-3,5-bisphosphate; PtdIns5P, phosphatidylinositol-5-phosphate; ref(2)P, refractory to sigma P; Syx17, Syntaxin 17; TEM, transmission electron microscopy; UAS, upstream activating sequence; Uvrag, UV-resistance associated gene; VDRC, Vienna Drosophila RNAi Center; Vps34, Vacuolar protein sorting 34.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Autofagia/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA