Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Breast Cancer Res ; 21(1): 79, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277676

RESUMEN

BACKGROUND: Acquired resistance to trastuzumab is a major clinical problem in the treatment of HER2-positive (HER2+) breast cancer patients. The selection of trastuzumab-resistant patients is a great challenge of precision oncology. The aim of this study was to identify novel epigenetic biomarkers associated to trastuzumab resistance in HER2+ BC patients. METHODS: We performed a genome-wide DNA methylation (450K array) and a transcriptomic analysis (RNA-Seq) comparing trastuzumab-sensitive (SK) and trastuzumab-resistant (SKTR) HER2+ human breast cancer cell models. The methylation and expression levels of candidate genes were validated by bisulfite pyrosequencing and qRT-PCR, respectively. Functional assays were conducted in the SK and SKTR models by gene silencing and overexpression. Methylation analysis in 24 HER2+ human BC samples with complete response or non-response to trastuzumab-based treatment was conducted by bisulfite pyrosequencing. RESULTS: Epigenomic and transcriptomic analysis revealed the consistent hypermethylation and downregulation of TGFBI, CXCL2, and SLC38A1 genes in association with trastuzumab resistance. The DNA methylation and expression levels of these genes were validated in both sensitive and resistant models analyzed. Of the genes, TGFBI presented the highest hypermethylation-associated silencing both at the transcriptional and protein level. Ectopic expression of TGFBI in the SKTR model suggest an increased sensitivity to trastuzumab treatment. In primary tumors, TGFBI hypermethylation was significantly associated with trastuzumab resistance in HER2+ breast cancer patients. CONCLUSIONS: Our results suggest for the first time an association between the epigenetic silencing of TGFBI by DNA methylation and trastuzumab resistance in HER2+ cell models. These results provide the basis for further clinical studies to validate the hypermethylation of TGFBI promoter as a biomarker of trastuzumab resistance in HER2+ breast cancer patients.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Proteínas de la Matriz Extracelular/genética , Silenciador del Gen , Factor de Crecimiento Transformador beta/genética , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Islas de CpG , Metilación de ADN , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Regiones Promotoras Genéticas , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Análisis de Secuencia de ADN , Factor de Crecimiento Transformador beta/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico
2.
Breast Cancer Res ; 18(1): 90, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27608715

RESUMEN

BACKGROUND: microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well-evaluated as biomarkers for breast cancer diagnosis or monitoring. METHODS: Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. RESULTS: Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 patients with breast cancer as compared to the plasma exosomes of healthy control subjects. Receiver operating characteristic curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 is a better indicator of breast cancer than their individual levels. CONCLUSIONS: Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of patients with breast cancer. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Exosomas/genética , Exosomas/metabolismo , MicroARNs/genética , Anciano , Anciano de 80 o más Años , Animales , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Curva ROC
3.
J Biol Chem ; 288(45): 32753-32765, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24085299

RESUMEN

All viral RNA-dependent RNA polymerases (RdRps) have a conserved structural element termed motif D. Studies of the RdRp from poliovirus (PV) have shown that a conformational change of motif D leads to efficient and faithful nucleotide addition by bringing Lys-359 into the active site where it serves as a general acid. The RdRp of the Sabin I vaccine strain has Thr-362 changed to Ile. Such a drastic change so close to Lys-359 might alter RdRp function and contribute in some way to the attenuated phenotype of Sabin type I. Here we present our characterization of the T362I RdRp. We find that the T362I RdRp exhibits a mutator phenotype in biochemical experiments in vitro. Using NMR, we show that this change in nucleotide incorporation fidelity correlates with a change in the structural dynamics of motif D. A recombinant PV expressing the T362I RdRp exhibits normal growth properties in cell culture but expresses a mutator phenotype in cells. For example, the T362I-containing PV is more sensitive to the mutagenic activity of ribavirin than wild-type PV. Interestingly, the T362I change was sufficient to cause a statistically significant reduction in viral virulence. Collectively, these studies suggest that residues of motif D can be targeted when changes in nucleotide incorporation fidelity are desired. Given the observation that fidelity mutants can serve as vaccine candidates, it may be possible to use engineering of motif D for this purpose.


Asunto(s)
Simulación de Dinámica Molecular , Mutación Missense , Vacunas contra Poliovirus/química , Poliovirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Humanos , Resonancia Magnética Nuclear Biomolecular , Poliovirus/genética , Poliovirus/patogenicidad , Vacunas contra Poliovirus/genética , Vacunas contra Poliovirus/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribavirina/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia/genética
4.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496643

RESUMEN

Obesity is a predisposition factor for breast cancer, suggesting a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of ten human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells (ASPC). The screen identified a key adipogenic modulator, Zinc Alpha-2-Glycoprotein (ZAG/AZGP1), secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG in TNBC patients, but not other clinical subtypes of breast cancer, is linked to poor prognosis. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of ASPCs into cancer-associated fibroblasts to support tumorigenesis.

5.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915559

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has shown remarkable efficacy in cancer treatment. Still, most patients receiving CAR T cells relapse within 5 years of treatment. CAR-mediated trogocytosis (CMT) is a potential tumor escape mechanism in which cell surface proteins transfer from tumor cells to CAR T cells. CMT results in the emergence of antigen-negative tumor cells, which can evade future CAR detection, and antigen-positive CAR T cells, which is hypothesized to lead to CAR T cell fratricide and dysfunction. Using a system to selectively degrade trogocytosed antigen in CAR T cells, we show that the presence of trogocytosed antigen in CAR T cells directly causes CAR T cell fratricide and exhaustion. By performing a small molecule screening using a custom high throughput CMT-screening assay, we identified the cysteine protease cathepsin B (CTSB) as a key driver of CMT. We show that overexpression of cystatin A (CSTA), an endogenous human inhibitor of CTSB, reduces trogocytosis resulting in prolonged antitumor activity and increased CAR T cell expansion/persistence. Overall, we show that targeting CMT is an effective approach to enhance CAR T cell function, which may improve their clinical efficacy.

6.
Cancer Res Commun ; 4(7): 1655-1666, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38888911

RESUMEN

Obesity is a modifiable predisposition factor for postmenopausal breast cancer. This suggests a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of 10 human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells. The screen identified an adipogenic modulator, zinc-alpha-2-glycoprotein (ZAG/AZGP1) that is secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG is linked to poor prognosis in patients with TNBC but not in patients with other clinical subtypes of breast cancer. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of adipocyte stem and progenitor cells into cancer-associated fibroblasts to support tumorigenesis. SIGNIFICANCE: Functional screening of breast cancer secretomes revealed that triple-negative breast cancer promotes fibrosis in the adipose tissue microenvironment by secreting zinc-alpha-2-glycoprotein and promoting the transdifferentiation of adipocyte stem cells into myofibroblasts.


Asunto(s)
Fibrosis , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Ratones , Fibrosis/metabolismo , Fibrosis/patología , Animales , Línea Celular Tumoral , Adipogénesis , Adipocitos/metabolismo , Adipocitos/patología , Zn-alfa-2-Glicoproteína , Microambiente Tumoral , Proteínas de Plasma Seminal/metabolismo , Proteínas de Plasma Seminal/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología
7.
Mol Cancer Ther ; 23(3): 301-315, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-37931033

RESUMEN

Aberrant activation of the PI3K-AKT pathway is common in many cancers, including melanoma, and AKT1, 2 and 3 (AKT1-3) are bona fide oncoprotein kinases with well-validated downstream effectors. However, efforts to pharmacologically inhibit AKT have proven to be largely ineffective. In this study, we observed paradoxical effects following either pharmacologic or genetic inhibition of AKT1-3 in melanoma cells. Although pharmacological inhibition was without effect, genetic silencing of all three AKT paralogs significantly induced melanoma cell death through effects on mTOR. This phenotype was rescued by exogenous AKT1 expression in a kinase-dependent manner. Pharmacological inhibition of PI3K and mTOR with a novel dual inhibitor effectively suppressed melanoma cell proliferation in vitro and inhibited tumor growth in vivo. Furthermore, this single-agent-targeted therapy was well-tolerated in vivo and was effective against MAPK inhibitor-resistant patient-derived melanoma xenografts. These results suggest that inhibition of PI3K and mTOR with this novel dual inhibitor may represent a promising therapeutic strategy in this disease in both the first-line and MAPK inhibitor-resistant setting.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Muerte Celular
8.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948879

RESUMEN

Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. Independent analysis of published genomic and transcriptomic sequencing identified that receptor tyrosine kinase (RTK) ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. To target these unique genetic changes, a zebrafish acral melanoma model was exposed to a panel of narrow and broad spectrum multi-RTK inhibitors, revealing that dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration. The potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM patient-derived xenograft (PDX) tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.

9.
Mol Cancer Res ; 21(10): 1023-1036, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37363949

RESUMEN

Activating estrogen receptor alpha (ER; also known as ESR1) mutations are present in primary endometrial and metastatic breast cancers, promoting estrogen-independent activation of the receptor. Functional characterizations in breast cancer have established unique molecular and phenotypic consequences of the receptor, yet the impact of ER mutations in endometrial cancer has not been fully explored. In this study, we used CRISPR-Cas9 to model the clinically prevalent ER-Y537S mutation and compared results with ER-D538G to discover allele-specific differences between ER mutations in endometrial cancer. We found that constitutive activity of mutant ER resulted in changes in the expression of thousands of genes, stemming from combined alterations to ER binding and chromatin accessibility. The unique gene expression programs resulted in ER-mutant cells developing increased cancer-associated phenotypes, including migration, invasion, anchorage-independent growth, and growth in vivo. To uncover potential treatment strategies, we identified ER-associated proteins via Rapid Immunoprecipitation and Mass Spectrometry of Endogenous Proteins and interrogated two candidates, CDK9 and NCOA3. Inhibition of these regulatory proteins resulted in decreased growth and migration, representing potential novel treatment strategies for ER-mutant endometrial cancer. IMPLICATIONS: This study provides insight into mutant ER activity in endometrial cancer and identifies potential therapies for women with ER-mutant endometrial cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Endometriales , Femenino , Humanos , Alelos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Neoplasias de la Mama/patología , Mutación , Neoplasias Endometriales/genética , Fenotipo
10.
Cancer Res ; 83(24): 4161-4178, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098449

RESUMEN

Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE: The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Sistema de Señalización de MAP Quinasas , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Endoteliales/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Anilidas/farmacología , Anilidas/uso terapéutico , ARN Nuclear Pequeño/uso terapéutico
11.
Sci Rep ; 12(1): 19731, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396974

RESUMEN

Most endometrial cancers express the hormone receptor estrogen receptor alpha (ER) and are driven by excess estrogen signaling. However, evaluation of the estrogen response in endometrial cancer cells has been limited by the availability of hormonally responsive in vitro models, with one cell line, Ishikawa, being used in most studies. Here, we describe a novel, adherent endometrioid endometrial cancer (EEC) cell line model, HCI-EC-23. We show that HCI-EC-23 retains ER expression and that ER functionally responds to estrogen induction over a range of passages. We also demonstrate that this cell line retains paradoxical activation of ER by tamoxifen, which is also observed in Ishikawa and is consistent with clinical data. The mutational landscape shows that HCI-EC-23 is mutated at many of the commonly altered genes in EEC, has relatively few copy-number alterations, and is microsatellite instable high (MSI-high). In vitro proliferation of HCI-EC-23 is strongly reduced upon combination estrogen and progesterone treatment. HCI-EC-23 exhibits strong estrogen dependence for tumor growth in vivo and tumor size is reduced by combination estrogen and progesterone treatment. Molecular characterization of estrogen induction in HCI-EC-23 revealed hundreds of estrogen-responsive genes that significantly overlapped with those regulated in Ishikawa. Analysis of ER genome binding identified similar patterns in HCI-EC-23 and Ishikawa, although ER exhibited more bound sites in Ishikawa. This study demonstrates that HCI-EC-23 is an estrogen- and progesterone-responsive cell line model that can be used to study the hormonal aspects of endometrial cancer.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Endometriales , Femenino , Humanos , Progesterona/farmacología , Progesterona/uso terapéutico , Estradiol/farmacología , Células Tumorales Cultivadas , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Estrógenos/farmacología , Estrógenos/uso terapéutico , Carcinoma Endometrioide/tratamiento farmacológico , Carcinoma Endometrioide/genética , Línea Celular
12.
Nat Cancer ; 3(2): 232-250, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35221336

RESUMEN

Models that recapitulate the complexity of human tumors are urgently needed to develop more effective cancer therapies. We report a bank of human patient-derived xenografts (PDXs) and matched organoid cultures from tumors that represent the greatest unmet need: endocrine-resistant, treatment-refractory and metastatic breast cancers. We leverage matched PDXs and PDX-derived organoids (PDxO) for drug screening that is feasible and cost-effective with in vivo validation. Moreover, we demonstrate the feasibility of using these models for precision oncology in real time with clinical care in a case of triple-negative breast cancer (TNBC) with early metastatic recurrence. Our results uncovered a Food and Drug Administration (FDA)-approved drug with high efficacy against the models. Treatment with this therapy resulted in a complete response for the individual and a progression-free survival (PFS) period more than three times longer than their previous therapies. This work provides valuable methods and resources for functional precision medicine and drug development for human breast cancer.


Asunto(s)
Organoides , Neoplasias de la Mama Triple Negativas , Descubrimiento de Drogas , Xenoinjertos , Humanos , Medicina de Precisión/métodos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Estados Unidos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Invest Dermatol ; 141(1): 132-141.e3, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32569596

RESUMEN

UVR promotes skin cancer through multiple mechanisms, including induction of inflammation, oxidative stress, and DNA damage such as 8-oxoguanine and cyclobutane pyrimidine dimers. We investigated whether the anti-inflammatory activities of aspirin (acetylsalicylic acid [ASA]) could protect against UVB-induced DNA damage and skin carcinogenesis. ASA reduced UVB-induced 8-oxoguanine and cyclobutane pyrimidine dimers in Melan-A melanocytes and HaCaT keratinocytes. Skin from UVB-irradiated C57BL/6 mice receiving 0.4 mg ASA daily by gavage exhibited less inflammation, fewer sunburn cells, and reduced 8-oxoguanine lesions than skin from irradiated control animals. ASA similarly reduced UVB-induced sunburn cells, 8-oxoguanine, and cyclobutane pyrimidine dimer lesions in skin of melanoma-prone TN61R mice, and this was associated with decreased prostaglandin E2 in plasma and skin. These effects of ASA, however, did not delay melanoma onset in TN61R mice exposed to a single neonatal dose of UVB. In SKH1-E mice prone to squamous cell carcinoma, ASA reduced plasma and skin prostaglandin E2 levels and indices of UVB-induced DNA damage and delayed squamous cell carcinoma onset induced by chronic UVB. These results indicate that ASA can protect against UVB-induced inflammation in skin and reduce UVB-induced DNA damage in both melanocytes and keratinocytes. These effects translated into greater chemopreventive efficacy for UVB-induced squamous cell carcinoma than melanoma mouse models.


Asunto(s)
Aspirina/farmacología , Queratinocitos/efectos de los fármacos , Melanocitos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Neoplasias Experimentales , Neoplasias Cutáneas/tratamiento farmacológico , Piel/patología , Animales , Antiinflamatorios no Esteroideos/farmacología , Daño del ADN , Modelos Animales de Enfermedad , Queratinocitos/patología , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Piel/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Rayos Ultravioleta/efectos adversos
14.
Elife ; 102021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34812139

RESUMEN

Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.


Lots of people have small dark patches on their skin known as moles. Most moles form when individual cells known as melanocytes in the skin acquire a specific genetic mutation in a gene called BRAF. This mutation causes the cells to divide rapidly to form the mole. After a while, most moles stop growing and remain harmless for the rest of a person's life. Melanoma is a type of skin cancer that develops from damaged melanocytes. The same mutation in BRAF that is found in moles is also present in half of all cases of melanoma. Unlike in moles, the melanoma-causing mutation makes the melanocytes divide rapidly to form a tumor that keeps on growing indefinitely. It remains unclear why the same genetic mutation in the BRAF gene has such different consequences in moles and melanomas. To address this question, McNeal et al. used genetic approaches to study melanocytes from moles and melanomas. The experiments identified some molecules known as microRNAs that are present at higher levels in moles than in melanomas. Increasing the levels of two of these microRNAs in melanocytes from human skin stopped the cells from growing and dividing by inhibiting a gene called AURKB. This suggested that these microRNAs are responsible for halting the growth of moles. Introducing the mutated form of BRAF into melanocytes also stopped cells from growing and dividing by inhibiting AURKB. However, changing the environment surrounding the cells reversed this effect and allowed the melanocytes to resume dividing. In this way the mutated form of BRAF acts like a switch that allows melanocytes in skin cancers to start growing again under certain conditions. Further experiments found that a drug called barasertib is able to inhibit the growth of melanoma cells with the mutant form of BRAF. Future work will investigate whether it is possible to use this drug and other tools to stop skin cancer tumors from growing, and possibly even prevent skin tumors from forming in the first place.


Asunto(s)
Aurora Quinasa B/genética , Melanocitos/fisiología , MicroARNs/metabolismo , Mitosis/genética , Proteínas Proto-Oncogénicas B-raf/genética , Aurora Quinasa B/metabolismo , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal
15.
Mol Cell Biol ; 27(2): 678-88, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17116694

RESUMEN

Heparan sulfate (HS) chains are found in the extracellular matrix, covalently linked to core proteins collectively termed heparan sulfate proteoglycans (HSPGs). A wealth of data has demonstrated roles for HSPGs in the regulation of many cell surface signaling pathways that are crucial during development. Variations in the sulfation pattern along the HS chains influence their ability to interact with molecules such as growth factors, chemokines, morphogens, and adhesion molecules. Sulf1 and Sulf2 are members of a class of recently identified genes that encode heparan sulfate 6-O-endosulfatases (Sulf genes). The removal of 6-O-sulfate from HS via SULF activity influences the function of many factors, including Wnt, fibroblast growth factor, hepatocyte growth factor, heparin-binding epidermal growth factor, and bone morphogenetic protein. Given their possible developmental roles, we have examined Sulf gene expression during mouse embryogenesis. The two Sulf genes are expressed in a broad range of tissues throughout development with largely nonoverlapping expression patterns. Sulf2 transcripts are expressed in the lung, heart, placenta, and ribs. We generated a mouse line possessing a gene trap disruption of the Sulf2 gene. Mice homozygous for the Sulf2 gene trap allele are viable and fertile and have no major developmental defects on several genetic backgrounds. However, we observed strain-specific, nonpenetrant defects affecting viability, lung development, and growth in Sulf2 homozygous animals. These data suggest that Sulf2 may have roles in several tissues but that there is compensation by and/or redundancy with Sulf1.


Asunto(s)
Desarrollo Embrionario , Heparitina Sulfato/metabolismo , Sulfatasas/fisiología , Sulfotransferasas/fisiología , Animales , Heterocigoto , Homocigoto , Ratones , Ratones Mutantes , Especificidad de Órganos , Sulfatasas/genética , Sulfotransferasas/genética
16.
Syst Biol ; 57(5): 719-31, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18853359

RESUMEN

Although the power of multi-locus data in estimating species trees is apparent, it is also clear that the analytical methodologies for doing so are still maturing. For example, of the methods currently available for estimating species trees from multilocus data, the Bayesian method introduced by Liu and Pearl (2007; BEST) is the only one that provides nodal support values. Using gene sequences from five nuclear loci, we explored two analytical methods (deep coalescence and BEST) to reconstruct the species tree of the five primary Manacus OTUs: M. aurantiacus, M. candei, M. vitellinus, populations of M. manacus from west of the Andes (M. manacus (w)), and populations of M. manacus from east of the Andes (M. manacus (e)). Both BEST and deep coalescence supported a sister relationship between M. vitellinus and M. manacus (w). A lower probability tree from the BEST analysis and one of the most parsimonious deep coalescence trees also supported a sister relationship between M. candei and M. aurantiacus. Because hybrid zones connect the distributions of most Manacus species, we examined the potential influence of post-divergence gene flow on the sister relationship of parapatrically distributed M. vitellinus and M. manacus (w). An isolation-with-migration (IM) analysis found relatively high levels of gene flow between M. vitellinus and M. manacus (w). Whether the gene flow is obscuring a true sister relationship between M. manacus (w) and M. manacus (e) remained unclear, pointing to the need for more detailed models accommodating multispecies, multilocus DNA sequence data.


Asunto(s)
Aves/clasificación , Aves/genética , Evolución Molecular , Modelos Genéticos , Filogenia , Animales , Demografía , Funciones de Verosimilitud , Recombinación Genética
17.
Clin Cancer Res ; 25(16): 5107-5121, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31164374

RESUMEN

PURPOSE: Small-cell lung cancer (SCLC) has been treated clinically as a homogeneous disease, but recent discoveries suggest that SCLC is heterogeneous. Whether metabolic differences exist among SCLC subtypes is largely unexplored. In this study, we aimed to determine whether metabolic vulnerabilities exist between SCLC subtypes that can be therapeutically exploited. EXPERIMENTAL DESIGN: We performed steady state metabolomics on tumors isolated from distinct genetically engineered mouse models (GEMM) representing the MYC- and MYCL-driven subtypes of SCLC. Using genetic and pharmacologic approaches, we validated our findings in chemo-naïve and -resistant human SCLC cell lines, multiple GEMMs, four human cell line xenografts, and four newly derived PDX models. RESULTS: We discover that SCLC subtypes driven by different MYC family members have distinct metabolic profiles. MYC-driven SCLC preferentially depends on arginine-regulated pathways including polyamine biosynthesis and mTOR pathway activation. Chemo-resistant SCLC cells exhibit increased MYC expression and similar metabolic liabilities as chemo-naïve MYC-driven cells. Arginine depletion with pegylated arginine deiminase (ADI-PEG 20) dramatically suppresses tumor growth and promotes survival of mice specifically with MYC-driven tumors, including in GEMMs, human cell line xenografts, and a patient-derived xenograft from a relapsed patient. Finally, ADI-PEG 20 is significantly more effective than the standard-of-care chemotherapy. CONCLUSIONS: These data identify metabolic heterogeneity within SCLC and suggest arginine deprivation as a subtype-specific therapeutic vulnerability for MYC-driven SCLC.


Asunto(s)
Arginina/metabolismo , Metabolismo Energético , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Redes y Vías Metabólicas , Ratones , Ratones Transgénicos , Modelos Biológicos , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas/diagnóstico por imagen , Carcinoma Pulmonar de Células Pequeñas/patología , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Nat Med ; 25(4): 620-627, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833748

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) was responsible for ~ 44,000 deaths in the United States in 2018 and is the epitome of a recalcitrant cancer driven by a pharmacologically intractable oncoprotein, KRAS1-4. Downstream of KRAS, the RAF→MEK→ERK signaling pathway plays a central role in pancreatic carcinogenesis5. However, paradoxically, inhibition of this pathway has provided no clinical benefit to patients with PDA6. Here we show that inhibition of KRAS→RAF→MEK→ERK signaling elicits autophagy, a process of cellular recycling that protects PDA cells from the cytotoxic effects of KRAS pathway inhibition. Mechanistically, inhibition of MEK1/2 leads to activation of the LKB1→AMPK→ULK1 signaling axis, a key regulator of autophagy. Furthermore, combined inhibition of MEK1/2 plus autophagy displays synergistic anti-proliferative effects against PDA cell lines in vitro and promotes regression of xenografted patient-derived PDA tumors in mice. The observed effect of combination trametinib plus chloroquine was not restricted to PDA as other tumors, including patient-derived xenografts (PDX) of NRAS-mutated melanoma and BRAF-mutated colorectal cancer displayed similar responses. Finally, treatment of a patient with PDA with the combination of trametinib plus hydroxychloroquine resulted in a partial, but nonetheless striking disease response. These data suggest that this combination therapy may represent a novel strategy to target RAS-driven cancers.


Asunto(s)
Autofagia/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas ras/metabolismo , Animales , Antígeno CA-19-9/metabolismo , Línea Celular Tumoral , Cloroquina/farmacología , Humanos , Ratones SCID , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Piridonas/farmacología , Pirimidinonas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
19.
Nat Med ; 25(5): 861, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30918364

RESUMEN

In the version of this article initially published, the label over the bottom schematic in Fig. 1a was "pH > 5.0"; it should have been "pH < 5.0". Further, the original article misspelt the surname of Katrin P. Guillen as "Gullien". These errors have been corrected in the print, PDF and HTML versions of the article.

20.
Cancer Prev Res (Phila) ; 11(10): 629-642, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30021726

RESUMEN

There are conflicting epidemiologic data on whether chronic aspirin (ASA) use may reduce melanoma risk in humans. Potential anticancer effects of ASA may be mediated by its ability to suppress prostaglandin E2 (PGE2) production and activate 5'-adenosine monophosphate-activated protein kinase (AMPK). We investigated the inhibitory effects of ASA in a panel of melanoma and transformed melanocyte cell lines, and on tumor growth in a preclinical model. ASA and the COX-2 inhibitor celecoxib did not affect melanoma cell viability, but significantly reduced colony formation, cell motility, and pigmentation (melanin production) in vitro at concentrations of 1 mmol/L and 20 µmol/L, respectively. ASA-mediated inhibition of cell migration and pigmentation was rescued by exogenous PGE2 or Compound C, which inhibits AMPK activation. Levels of tyrosinase, MITF, and p-ERK were unaffected by ASA exposure. Following a single oral dose of 0.4 mg ASA to NOD/SCID mice, salicylate was detected in plasma and skin at 4 hours and PGE2 levels were reduced up to 24 hours. Some human melanoma tumors xenografted into NOD/SCID mice were sensitive to chronic daily ASA administration, exhibiting reduced growth and proliferation. ASA-treated mice bearing sensitive and resistant tumors exhibited both decreased PGE2 in plasma and tumors and increased phosphorylated AMPK in tumors. We conclude that ASA inhibits colony formation, cell motility, and pigmentation through suppression of PGE2 and activation of AMPK and reduces growth of some melanoma tumors in vivo This preclinical model could be used for further tumor and biomarker studies to support future melanoma chemoprevention trials in humans. Cancer Prev Res; 11(10); 629-42. ©2018 AACR.


Asunto(s)
Adenilato Quinasa/metabolismo , Aspirina/farmacología , Dinoprostona/metabolismo , Melanoma/prevención & control , Administración Oral , Animales , Aspirina/uso terapéutico , Celecoxib/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/farmacología , Femenino , Humanos , Masculino , Melanoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación/efectos de los fármacos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/prevención & control , Pigmentación de la Piel/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA