Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 45(5): 1359-1389, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35972610

RESUMEN

Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.


Asunto(s)
Selenio , Selenio/análisis , Ecosistema , Contaminación Ambiental
2.
Biol Trace Elem Res ; 201(1): 514-524, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35171408

RESUMEN

Potable groundwater (GW) contamination through arsenic (As) is a commonly reported environmental issue in Pakistan. In order to examine the groundwater quality for As contamination, its geochemical behavior, and other physicochemical parameters, 69 samples from various groundwater sources were collected from the mining area of Pind Dadan Khan, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and linked public health risk. Arsenic detected in the groundwater samples varied from 0.5 to 100 µg/L, with an average value of 21.38 µg/L. Forty-two samples were beyond the acceptable limit of 10 µg/L of the WHO for drinking purposes. The statistical summary showed that the groundwater cation concentration was in decreasing order such as Na+ > Ca2+ > Mg2+ > K+, while anions were as follows: HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies results depicted that groundwater samples belong to CaHCO3 type. Rock-water interactions control the hydrochemistry of groundwater. Saturation indices' results indicated the saturation of the groundwater sources for CO3 minerals due to their positive SI values. Such minerals include aragonite, calcite, dolomite, and fluorite. The principal component analysis (PCA) findings possess a total variability of 77.36% suggesting the anthropogenic and geogenic contributing sources of contaminant. The results of the Exposure-health-risk-assessment model for measuring As reveal significant potential carcinogenic risk exceeding the threshold level (value > 10-4) and HQ level (value > 1.0).


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Agua , Arsénico/análisis , Pakistán , Contaminantes Químicos del Agua/análisis , Minerales/análisis , Agua Subterránea/análisis , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA