Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell Neurosci ; 71: 34-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26704906

RESUMEN

Amyotrophic lateral sclerosis is a late-onset and terminal neurodegenerative disease. The majority of cases are sporadic with unknown causes and only a small number of cases are genetically linked. Recent evidence suggests that post-transcriptional regulation and epigenetic mechanisms, such as microRNAs, underlie the onset and progression of neurodegenerative disorders; therefore, altered microRNA expression may result in the dysregulation of key genes and biological pathways that contribute to the development of sporadic amyotrophic lateral sclerosis. Using systems biology analyses on postmortem human spinal cord tissue, we identified dysregulated mature microRNAs and their potential targets previously implicated in functional process and pathways associated with the pathogenesis of ALS. Furthermore, we report a global reduction of mature microRNAs, alterations in microRNA processing, and support for a role of the nucleotide binding protein, TAR DNA binding protein 43, in regulating sporadic amyotrophic lateral sclerosis-associated microRNAs, thereby offering a potential underlying mechanism for sporadic amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , MicroARNs/genética , Médula Espinal/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Médula Espinal/patología
2.
Stem Cells ; 33(5): 1480-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25532472

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder resulting in motor neuron (MN) loss. There are currently no effective therapies; however, cellular therapies using neural progenitor cells protect MNs and attenuate disease progression in G93A-SOD1 ALS rats. Recently, we completed a phase I clinical trial examining intraspinal human spinal stem cell (HSSC) transplantation in ALS patients which demonstrated our approach was safe and feasible, supporting the phase II trial currently in progress. In parallel, efforts focused on understanding the mechanisms underlying the preclinical benefit of HSSCs in vitro and in animal models of ALS led us to investigate how insulin-like growth factor-I (IGF-I) production contributes to cellular therapy neuroprotection. IGF-I is a potent growth factor with proven efficacy in preclinical ALS studies, and we contend that autocrine IGF-I production may enhance the salutary effects of HSSCs. By comparing the biological properties of HSSCs to HSSCs expressing sixfold higher levels of IGF-I, we demonstrate that IGF-I production augments the production of glial-derived neurotrophic factor and accelerates neurite outgrowth without adversely affecting HSSC proliferation or terminal differentiation. Furthermore, we demonstrate that increased IGF-I induces more potent MN protection from excitotoxicity via both indirect and direct mechanisms, as demonstrated using hanging inserts with primary MNs or by culturing with organotypic spinal cord slices, respectively. These findings support our theory that combining autocrine growth factor production with HSSC transplantation may offer a novel means to achieve additive neuroprotection in ALS.


Asunto(s)
Comunicación Autocrina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células-Madre Neurales/metabolismo , Neuroprotección , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Humanos , Fármacos Neuroprotectores/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor IGF Tipo 1/metabolismo , Médula Espinal/citología
3.
Stem Cells ; 32(5): 1099-109, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24448926

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a lethal disease involving the loss of motor neurons. Although the mechanisms responsible for motor neuron degeneration in ALS remain elusive, the development of stem cell-based therapies for the treatment of ALS has gained widespread support. Here, we review the types of stem cells being considered for therapeutic applications in ALS, and emphasize recent preclinical advances that provide supportive rationale for clinical translation. We also discuss early trials from around the world translating cellular therapies to ALS patients, and offer important considerations for future clinical trial design. Although clinical translation is still in its infancy, and additional insight into the mechanisms underlying therapeutic efficacy and the establishment of long-term safety are required, these studies represent an important first step toward the development of effective cellular therapies for the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Investigación Biomédica/métodos , Trasplante de Células Madre/métodos , Células Madre/citología , Animales , Investigación Biomédica/tendencias , Diferenciación Celular , Predicción , Humanos , Modelos Neurológicos , Neuronas Motoras/citología , Trasplante de Células Madre/tendencias
4.
Neurobiol Dis ; 46(1): 59-68, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22245661

RESUMEN

Embryonic stem (ES) cells and their derivatives are an important resource for developing novel cellular therapies for disease. Controlling proliferation and lineage selection, however, are essential to circumvent the possibility of tumor formation and facilitate the safe translation of ES-based therapies to man. Expression of appropriate transcription factors is one approach to direct the differentiation of ES cells towards a specific lineage and stop proliferation. Neural differentiation can be initiated in ES cells by expression of Neurogenin1 (Ngn1). In this study we investigate the effects of controlled Ngn1 expression on mouse ES (mES) cell differentiation in vitro and following grafting into the rat spinal cord. In vitro, Ngn1 expression in mES cells leads to rapid and specific neural differentiation, and a concurrent decrease in proliferation. Similarly transplantation of Ngn1-expressing mES cells into the spinal cord lead to in situ differentiation and spinal precursor formation. These data demonstrate that Ngn1 expression in mES cells is sufficient to promote neural differentiation and inhibit proliferation, thus establishing an approach to safely graft ES cells into the spinal cord.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Células Madre Embrionarias/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Trasplante de Células Madre/métodos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/trasplante , Ratones , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Ratas , Ratas Sprague-Dawley , Enfermedades de la Médula Espinal/patología , Enfermedades de la Médula Espinal/cirugía , Trasplante Heterólogo/métodos
5.
Ann Neurol ; 70(3): 353-61, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21905078

RESUMEN

Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/terapia , Investigación con Células Madre , Células Madre/fisiología , Enfermedad de Alzheimer/terapia , Esclerosis Amiotrófica Lateral/terapia , Animales , Humanos , Enfermedad de Huntington/terapia , Atrofia Muscular Espinal/terapia , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/terapia , Trasplante de Células Madre/métodos , Células Madre/clasificación , Tecnología
6.
Growth Factors ; 27(3): 133-40, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19294549

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by loss of both upper and lower motor neurons. ALS progression is complex and likely due to cellular dysfunction at multiple levels, including mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress, axonal dysfunction, reactive astrocytosis, and mutant superoxide dismutase expression, therefore, treatment must provide neuronal protection from multiple insults. A significant amount of ALS research focuses on growth factor-based therapies. Growth factors including insulin-like growth factor-I, vascular endothelial growth factor, brain-derived neurotrophic factor, and glial-derived neurotrophic factor exhibit robust neuroprotective effects on motor neurons in ALS models. Issues concerning growth factor delivery, stability and unwanted side effects slow the transfer of these treatments to human ALS patients. Stem cells represent a new therapeutic approach offering both cellular replacement and trophic support for the existing population. Combination therapy consisting of stem cells expressing beneficial growth factors may provide a comprehensive treatment for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Neuronas Motoras/citología , Células Madre/citología , Esclerosis Amiotrófica Lateral/terapia , Axones/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Neuronas Motoras/fisiología , Estrés Oxidativo , Trasplante de Células Madre , Células Madre/fisiología
7.
Curr Biol ; 13(12): 1009-18, 2003 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-12814546

RESUMEN

BACKGROUND: The importance of endogenous antagonists in intracellular signal transduction pathways is becoming increasingly recognized. There is evidence in cultured mammalian cells that Pyst1/MKP3, a dual specificity protein phosphatase, specifically binds to and inactivates ERK1/2 mitogen-activated protein kinases (MAPKs). High-level Pyst1/Mkp3 expression has recently been found at many sites of known FGF signaling in mouse embryos, but the significance of this association and its function are not known. RESULTS: We have cloned chicken Pyst1/Mkp3 and show that high-level expression in neural plate correlates with active MAPK. We show that FGF signaling regulates Pyst1 expression in developing neural plate and limb bud by ablating and/or transplanting tissue sources of FGFs and by applying FGF protein or a specific FGFR inhibitor (SU5402). We further show by applying a specific MAP kinase kinase inhibitor (PD184352) that Pyst1 expression is regulated via the MAPK cascade. Overexpression of Pyst1 in chick embryos reduces levels of activated MAPK in neural plate and alters its morphology and retards limb bud outgrowth. CONCLUSIONS: Pyst1 is an inducible antagonist of FGF signaling in embryos and acts in a negative feedback loop to regulate the activity of MAPK. Our results demonstrate both the importance of MAPK signaling in neural induction and limb bud outgrowth and the critical role played by dual specificity MAP kinase phosphatases in regulating developmental outcomes in vertebrates.


Asunto(s)
Retroalimentación Fisiológica , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Embrión de Pollo , Cartilla de ADN , Fosfatasa 6 de Especificidad Dual , Electroporación , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica , Heparina , Inmunohistoquímica , Hibridación in Situ , Esbozos de los Miembros , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Pirroles/metabolismo
8.
FEBS Lett ; 580(17): 4242-5, 2006 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-16831426

RESUMEN

Expression of the gene encoding the MKP-3/Pyst1 protein phosphatase, which inactivates ERK MAPK, is induced by FGF. However, which intracellular signalling pathway mediates this expression is unclear, with essential roles proposed for both ERK and PI(3)K in chick embryonic limb. Here, we report that MKP-3/Pyst1 expression is sensitive to inhibition of ERK or MAPKK, that endogenous MKP-3/Pyst1 co-localizes with activated ERK, and expression of MKP-3/Pyst1 in mice lacking PDK1, an essential mediator of PI(3)K signalling. We conclude that MKP-3/Pyst1 expression is mediated by ERK activation and that negative feedback control predominates in limiting the extent of FGF-induced ERK activity.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Fosfoproteínas Fosfatasas/biosíntesis , Proteínas Tirosina Fosfatasas/biosíntesis , Animales , Embrión de Pollo , Fosfatasa 6 de Especificidad Dual , Ratones , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo
9.
Stem Cells Transl Med ; 5(3): 379-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26744412

RESUMEN

Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.


Asunto(s)
Enfermedad de Alzheimer/terapia , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Células-Madre Neurales/trasplante , Neurogénesis , Enfermedad de Alzheimer/patología , Animales , Diferenciación Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Células-Madre Neurales/citología , Neuronas/patología , Neuronas/trasplante , Sinapsis/fisiología
10.
J Neurosci Methods ; 205(2): 277-82, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22285259

RESUMEN

Zebrafish are becoming increasingly popular models for examining the mechanisms of and treatments for neurological diseases. The available methods and technology to examine disease processes in vivo are increasing, however, detailed observations of subcellular structures and processes are complex in whole organisms. To address this need, we developed a primary motor neuron (MN) culture technique for utilization with zebrafish neurological disease models. Our protocol enables the culturing of cells from embryos older than 24h post-fertilization, at points after MN axonal development and outgrowth begins, which enables MN axons to develop in vivo in the context of the normal endogenous cues of the model organism, while also providing the accessibility of an in vitro system. When utilized with the increasing number of genetically modified or transgenic models of neurological diseases, this approach provides a novel tool for the examination of cellular and subcellular disease mechanisms, and offers a new platform for therapeutic discoveries in zebrafish.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Inmunohistoquímica , Larva , Neurogénesis/fisiología
11.
Mol Neurodegener ; 7: 44, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22938571

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal disorder involving the degeneration and loss of motor neurons. The mechanisms of motor neuron loss in ALS are unknown and there are no effective treatments. Defects in the distal axon and at the neuromuscular junction are early events in the disease course, and zebrafish provide a promising in vivo system to examine cellular mechanisms and treatments for these events in ALS pathogenesis. RESULTS: We demonstrate that transient genetic manipulation of zebrafish to express G93A-SOD1, a mutation associated with familial ALS, results in early defects in motor neuron outgrowth and axonal branching. This is consistent with previous reports on motor neuron axonal defects associated with familial ALS genes following knockdown or mutant protein overexpression. We also demonstrate that upregulation of growth factor signaling is capable of rescuing these early defects, validating the potential of the model for therapeutic discovery. We generated stable transgenic zebrafish lines expressing G93A-SOD1 to further characterize the consequences of G93A-SOD1 expression on neuromuscular pathology and disease progression. Behavioral monitoring reveals evidence of motor dysfunction and decreased activity in transgenic ALS zebrafish. Examination of neuromuscular and neuronal pathology throughout the disease course reveals a loss of neuromuscular junctions and alterations in motor neuron innervations patterns with disease progression. Finally, motor neuron cell loss is evident later in the disease. CONCLUSIONS: This sequence of events reflects the stepwise mechanisms of degeneration in ALS, and provides a novel model for mechanistic discovery and therapeutic development for neuromuscular degeneration in ALS.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Motoras/patología , Unión Neuromuscular/patología , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Western Blotting , Humanos , Actividad Motora/genética , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Superóxido Dismutasa-1 , Pez Cebra
12.
Regen Med ; 6(2): 201-13, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21391854

RESUMEN

Amyotrophic lateral sclerosis and spinal muscular atrophy are devastating neurodegenerative diseases that lead to the specific loss of motor neurons. Recently, stem cell technologies have been developed for the investigation and treatment of both diseases. Here we discuss the different stem cells currently being studied for mechanistic discovery and therapeutic development, including embryonic, adult and induced pluripotent stem cells. We also present supporting evidence for the utilization of stem cell technology in the treatment of amyotrophic lateral sclerosis and spinal muscular atrophy, and describe key issues that must be considered for the transition of stem cell therapies for motor neuron diseases from bench to bedside. Finally, we discuss the first-in-human Phase I trial currently underway examining the safety and feasibility of intraspinal stem cell injections in amyotrophic lateral sclerosis patients as a foundation for translating stem cell therapies for various neurological diseases.


Asunto(s)
Investigación Biomédica/métodos , Enfermedad de la Neurona Motora/etiología , Enfermedad de la Neurona Motora/terapia , Trasplante de Células Madre/métodos , Células Madre/fisiología , Adulto , Animales , Ensayos Clínicos Fase I como Asunto , Humanos , Modelos Biológicos , Investigación Biomédica Traslacional/métodos
13.
Cell Transplant ; 20(8): 1153-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21669047

RESUMEN

Previous rodent studies employing monotherapy or combined immunosuppressive regimens have demonstrated a variable degree of spinal xenograft survival in several spinal neurodegenerative models including spinal ischemia, trauma, or amyotrophic lateral sclerosis (ALS). Accordingly, the characterization of optimal immunosuppressive protocols for the specific neurodegenerative model is critical to ensure reliable assessment of potential long-term therapeutic effects associated with cell replacement. In the present study we characterized the survival of human spinal stem cells when grafted into the lumbar spinal cords of a rodent model of ALS, SOD1 (G93A) male and female rats (60-67 days old). Four different immunosuppressive protocols were studied: i) FK506 (q12h); ii) FK506 (qd) + mycophenolate (PO; q12h, up to 7 days postop); iii) FK506 (qd) + mycophenolate (IP; q12h, up to 7 days postop); and iv) FK506 (qd) + mycophenolate (IP; qd, up to 7 days postop). Three weeks after cell grafting the number of surviving human cells was then systematically assessed. The highest density of grafted cells was seen in animals treated with FK506 (qd) and mycophenolate (IP; qd; an average 915 ± 95 grafted cells per spinal cord section). The majority of hNUMA-positive cells colocalized with doublecortin (DCX) immunoreactivity. DCX-positive neurons showed extensive axodendritic sprouting toward surrounding host neurons. In addition, migrating grafted cells were identified up to 500 µm from the graft. In animals treated with FK506 (q12h), FK506 (qd) + mycophenolate (PO; q12h) or FK506 (qd) + mycophenolate (IP; q12h), 11.8 ± 3.4%, 61.2 ± 7.8%, and 99.4 ± 8.9% [expressed as percent of the FK506 (qd) and mycophenolate (IP; qd)] cell survival was seen, respectively. In contrast to animals treated with a combination of FK506 + mycophenolate, robust CD4/8 immunoreactivity was identified in the vicinity of the injection tract in animals treated with FK506 only. These data suggest that a combined, systemically delivered immunosuppression regimen including FK506 and mycophenolate can significantly improve survival of human spinal stem cells after intraspinal transplantation in SOD1 (G93A) rats.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Terapia de Inmunosupresión/métodos , Inmunosupresores/uso terapéutico , Médula Espinal/citología , Trasplante de Células Madre , Células Madre/citología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/inmunología , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Ratas , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Tacrolimus/farmacología , Tacrolimus/uso terapéutico
14.
Nat Rev Neurol ; 8(3): 172-6, 2011 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-22158518

RESUMEN

Effective treatments are urgently needed for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of motor neurons. In 2009, the FDA approved the first phase I safety trial of direct intraspinal transplantation of neural stem cells into patients with ALS, which is currently in progress. Stem cell technologies represent a promising approach for treating ALS, but several issues must be addressed when translating promising experimental ALS therapies to patients. This article highlights the key research that supports the use of stem cells as a therapy for ALS, and discusses the rationale behind and approach to the phase I trial. Completion of the trial could pave the way for continued advances in stem cell therapy for ALS and other neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Trasplante de Células Madre/métodos , Animales , Ensayos Clínicos Fase I como Asunto , Modelos Animales de Enfermedad , Humanos , Imagen por Resonancia Magnética , Factores de Crecimiento Nervioso/farmacología , Factores de Crecimiento Nervioso/uso terapéutico , Trasplante de Células Madre/tendencias
15.
Stem Cells Dev ; 19(12): 1983-93, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20406098

RESUMEN

Most stem cell therapies involve direct, intraparachymal placement of neural progenitor cells. These cells provide physical support to the endogenous neuronal population and may be engineered to provide in situ growth factor support. Insulin-like growth factor-I (IGF-I) has potent neurotrophic and neuroprotective properties and is expressed by human neural stem cells (hNSCs). IGF-I is implicated in multiple aspects of cell behavior, including proliferation, differentiation, and survival. Enhancing hNSC function through IGF-I overexpression may increase the benefits of stem cell therapy. As a first step to that goal, we examined the direct effects of IGF-I on hNSC behavior in vitro. We demonstrate that IGF-I treatment enhances both the number and length of hNSC neurites. This is correlated with a decrease in proliferation, suggesting that IGF-I promotes neurite outgrowth but not proliferation. While IGF-I activates both AKT and MAPK signaling in hNSCs, we demonstrate that IGF-I-mediated neurite outgrowth is dependent only on AKT signaling. Finally, we demonstrate that IGF-I is neuroprotective after glutamate exposure in a model of excitotoxic cell death.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuritas/metabolismo , Neurogénesis , Médula Espinal/citología , Western Blotting , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Ácido Glutámico/farmacología , Humanos , Etiquetado Corte-Fin in Situ , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
16.
Dev Neurobiol ; 69(13): 871-84, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19672955

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder characterized by selective loss of motor neurons (MNs). Twenty percent of familial ALS cases are associated with mutations in Cu(2+)/Zn(2+) superoxide dismutase (SOD1). To specifically understand the cellular mechanisms underlying mutant SOD1 toxicity, we have established an in vitro model of ALS using rat primary MN cultures transfected with an adenoviral vector encoding a mutant SOD1, G93A-SOD1. Transfected cells undergo axonal degeneration and alterations in biochemical responses characteristic of cell death such as activation of caspase-3. Vascular endothelial growth factor (VEGF) is an angiogenic and neuroprotective growth factor that can increase axonal outgrowth, block neuronal apoptosis, and promote neurogenesis. Decreased VEGF gene expression in mice results in a phenotype similar to that seen in patients with ALS, thus linking loss of VEGF to the pathogenesis of MN degeneration. Decreased neurotrophic signals prior to and during disease progression may increase MN susceptibility to mutant SOD1-induced toxicity. In this study, we demonstrate a decrease in VEGF and VEGFR2 levels in the spinal cord of G93A-SOD1 ALS mice. Furthermore, in isolated MN cultures, VEGF alleviates the effects of G93A-SOD1 toxicity and neuroprotection involves phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling. Overall, these studies validate the usefulness of VEGF as a potential therapeutic factor for the treatment of ALS and give valuable insight into the responsible signaling pathways and mechanisms involved.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/efectos de los fármacos , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Factores de Crecimiento Endotelial Vascular/farmacología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Análisis de Varianza , Animales , Western Blotting , Muerte Celular/genética , Citoprotección , Modelos Animales de Enfermedad , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Development ; 134(16): 2889-94, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17660197

RESUMEN

Neural tissue formation is induced by growth factors that activate networks of signal transduction cascades that ultimately lead to the expression of early neural genes, including transcription factors of the SoxB family. Here, we report that fibroblast growth factor (FGF)-induced Erk1/2 (Mapk3 and Mapk1, respectively) mitogen-activated protein kinase (MAPK), but not phosphatidylinositol 3'-OH kinase (PI3K, Pik3r1), signalling is required for neural specification in mouse embryonic stem (ES) cells and in the chick embryo. Further, blocking Erk1/2 inhibits the onset of key SoxB genes in both mouse ES cells (Sox1) and chick embryos (Sox2 and Sox3) and, in both contexts, Erk1/2 signalling is required during only a narrow time window, as neural specification takes place. In the absence of Erk1/2 signalling, differentiation of ES cells stalls following Fgf5 upregulation. Using differentiating ES cells as a model for neural specification, we demonstrate that sustained Erk1/2 activation controls the transition from an Fgf5-positive, primitive ectoderm-like cell state to a neural progenitor cell state without attenuating bone morphogenetic protein (BMP) signalling and we also define the minimum period of Erk1/2 activity required to mediate this key developmental step. Together, these findings identify a conserved, specific and stage-dependent requirement for Erk1/2 signalling downstream of FGF-induced neural specification in higher vertebrates and provide insight into the signalling dynamics governing this process.


Asunto(s)
Tipificación del Cuerpo , Factores de Crecimiento de Fibroblastos/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Pollo , Ectodermo/citología , Ratones , Modelos Biológicos , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Transducción de Señal , Factores de Tiempo
18.
Dev Biol ; 302(2): 536-52, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17123506

RESUMEN

During early vertebrate development Fibroblast Growth Factor (FGF) signalling is required for multiple activities including specification of mesodermal, neural and heart tissue, as well as gastrulation movements and regulation of differentiation and pattern onset in the extending body axis. A current challenge is to understand how FGF signalling generates such diverse outcomes. A key FGF downstream pathway is the Ras-MAPK/Erk1/2 cascade, which culminates in the phosphorylation of target proteins, such as the Ets family of transcription factors. To begin to assess specificity downstream of FGF in the chick embryo we have characterised the patterns of Fgfr1-4 expression and Erk1/2 activation, as well as expression of the Erk1/2 specific phosphatase, Mkp3 and of three Ets factor genes (Erm, Pea3 and Er81) from early blastula to the 10 somite stage. We identify new sites of Fgfr expression and show that nearly all regions of Erk1/2 activity are within Fgfr expression domains and require FGF signalling. Differences in intensity, duration, distribution and sub-cellular localisation of activated Erk1/2 are observed in distinct cell populations within the embryo and during wound healing. With few exceptions, a tight correspondence between Erk1/2 activation and Mkp3 expression is found, while specific combinations of Ets factors are associated with distinct regions of Erk1/2 activation. These findings provide a comprehensive spatial and temporal map of FGF/Erk1/2 activity during early chick development and identify region and tissue specific differences in expression of Fgfrs as well as Erk1/2 phosphorylation and transcriptional targets which help to define response specificity.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Animales , Embrión de Pollo , Fosfatasa 6 de Especificidad Dual , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteínas Tirosina Fosfatasas/biosíntesis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/biosíntesis , Transducción de Señal , Factores de Transcripción/biosíntesis
19.
Development ; 132(19): 4273-83, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16141226

RESUMEN

Epiblast cells adjacent to the regressing primitive streak behave as a stem zone that progressively generates the entire spinal cord and also contributes to paraxial mesoderm. Despite this fundamental task, this cell population is poorly characterised, and the tissue interactions and signalling pathways that specify this unique region are unknown. Fibroblast growth factor (FGF) is implicated but it is unclear whether it is sufficient and/or directly required for stem zone specification. It is also not understood how establishment of the stem zone relates to the acquisition of spinal cord identity as indicated by expression of caudal Hox genes. Here, we show that many cells in the chick stem zone express both early neural and mesodermal genes; however, stem zone-specific gene expression can be induced by signals from underlying paraxial mesoderm without concomitant induction of an ambivalent neural/mesodermal cell state. The stem zone is a site of FGF/MAPK signalling and we show that although FGF alone does not mimic paraxial mesoderm signals, it is directly required in epiblast cells for stem zone specification and maintenance. We further demonstrate that caudal Hox gene expression in the stem zone also depends on FGF and that neither stem zone specification nor caudal Hox gene onset requires retinoid signalling. These findings thus support a two step model for spinal cord generation - FGF-dependent establishment of the stem zone in which progressively more caudal Hox genes are expressed, followed by the retinoid-dependent assignment of spinal cord identity.


Asunto(s)
Médula Espinal/embriología , Células Madre/citología , Animales , Diferenciación Celular/fisiología , Embrión de Pollo , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Sistema de Señalización de MAP Quinasas/fisiología , Mesodermo/citología , Mesodermo/fisiología , Neuronas/citología , Neuronas/metabolismo , Retinoides/fisiología , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Células Madre/metabolismo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA