RESUMEN
Inorganic superionic conductors possess high ionic conductivity and excellent thermal stability but their poor interfacial compatibility with lithium metal electrodes precludes application in all-solid-state lithium metal batteries1,2. Here we report a LaCl3-based lithium superionic conductor possessing excellent interfacial compatibility with lithium metal electrodes. In contrast to a Li3MCl6 (M = Y, In, Sc and Ho) electrolyte lattice3-6, the UCl3-type LaCl3 lattice has large, one-dimensional channels for rapid Li+ conduction, interconnected by La vacancies via Ta doping and resulting in a three-dimensional Li+ migration network. The optimized Li0.388Ta0.238La0.475Cl3 electrolyte exhibits Li+ conductivity of 3.02 mS cm-1 at 30 °C and a low activation energy of 0.197 eV. It also generates a gradient interfacial passivation layer to stabilize the Li metal electrode for long-term cycling of a Li-Li symmetric cell (1 mAh cm-2) for more than 5,000 h. When directly coupled with an uncoated LiNi0.5Co0.2Mn0.3O2 cathode and bare Li metal anode, the Li0.388Ta0.238La0.475Cl3 electrolyte enables a solid battery to run for more than 100 cycles with a cutoff voltage of 4.35 V and areal capacity of more than 1 mAh cm-2. We also demonstrate rapid Li+ conduction in lanthanide metal chlorides (LnCl3; Ln = La, Ce, Nd, Sm and Gd), suggesting that the LnCl3 solid electrolyte system could provide further developments in conductivity and utility.
RESUMEN
Lead halide perovskite nanocrystals (LHP NCs) are regarded as promising emitters for next-generation ultrahigh-definition displays due to their high color purity and wide color gamut. Recently, the external quantum efficiency (EQE) of LHP NC based light-emitting diodes (PNC LEDs) has been rapidly improved to a level required by practical applications. However, the poor operational stability of the device, caused by halide ion migration at the grain boundary of LHP NC thin films, remains a great challenge. Herein, we report a resurfacing strategy via pseudohalogen ions to mitigate detrimental halide ion migration, aiming to stabilize PNC LEDs. We employ a thiocyanate solution processed post-treatment method to efficiently resurface CsPbBr3 NCs and demonstrate that the thiocyanate ions can effectively inhibit bromide ion migration in LHP NC thin films. Owing to thiocyanate resurfacing, we fabricated LEDs with a high EQE of 17.3%, a maximum brightness of 48000 cd m-2, and an excellent operation half-life time.
RESUMEN
Halide superionic conductors (SICs) are drawing significant research attention for their potential applications in all-solid-state batteries. A key challenge in developing such SICs is to explore and design halide structural frameworks that enable rapid ion movement. In this work, we show that the close-packed anion frameworks shared by traditional halide ionic conductors face intrinsic limitations in fast ion conduction, regardless of structural regulation. Beyond the close-packed anion frameworks, we identify that the non-close-packed anion frameworks have great potential to achieve superionic conductivity. Notably, we unravel that the non-close-packed UCl3-type framework exhibit superionic conductivity for a diverse range of carrier ions, including Li+, Na+, K+, and Ag+, which are validated through both ab initio molecular dynamics simulations and experimental measurements. We elucidate that the remarkable ionic conductivity observed in the UCl3-type framework structure stems from its significantly more distorted site and larger diffusion channel than its close-packed counterparts. By employing the non-close-packed anion framework as the key feature for high-throughput computational screening, we also identify LiGaCl3 as a promising candidate for halide SICs. These discoveries provide crucial insights for the exploration and design of novel halide SICs.
RESUMEN
Solid electrolytes (SEs) are central components that enable high-performance, all-solid-state lithium batteries (ASSLBs). Amorphous SEs hold great potential for ASSLBs because their grain-boundary-free characteristics facilitate intact solid-solid contact and uniform Li-ion conduction for high-performance cathodes. However, amorphous oxide SEs with limited ionic conductivities and glassy sulfide SEs with narrow electrochemical windows cannot sustain high-nickel cathodes. Herein, we report a class of amorphous Li-Ta-Cl-based chloride SEs possessing high Li-ion conductivity (up to 7.16 mS cm-1) and low Young's modulus (approximately 3 GPa) to enable excellent Li-ion conduction and intact physical contact among rigid components in ASSLBs. We reveal that the amorphous Li-Ta-Cl matrix is composed of LiCl43-, LiCl54-, LiCl65- polyhedra, and TaCl6- octahedra via machine-learning simulation, solid-state 7Li nuclear magnetic resonance, and X-ray absorption analysis. Attractively, our amorphous chloride SEs exhibit excellent compatibility with high-nickel cathodes. We demonstrate that ASSLBs comprising amorphous chloride SEs and high-nickel single-crystal cathodes (LiNi0.88Co0.07Mn0.05O2) exhibit â¼99% capacity retention after 800 cycles at â¼3 C under 1 mA h cm-2 and â¼80% capacity retention after 75 cycles at 0.2 C under a high areal capacity of 5 mA h cm-2. Most importantly, a stable operation of up to 9800 cycles with a capacity retention of â¼77% at a high rate of 3.4 C can be achieved in a freezing environment of -10 °C. Our amorphous chloride SEs will pave the way to realize high-performance high-nickel cathodes for high-energy-density ASSLBs.
RESUMEN
Solid electrolytes (SEs) with superionic conductivity and interfacial stability are highly desirable for stable all-solid-state Li-metal batteries (ASSLMBs). Here, we employ neural network potential to simulate materials composed of Li, Zr/Hf, and Cl using stochastic surface walking method and identify two potential unique layered halide SEs, named Li2ZrCl6 and Li2HfCl6, for stable ASSLMBs. The predicted halide SEs possess high Li+ conductivity and outstanding compatibility with Li metal anodes. We synthesize these SEs and demonstrate their superior stability against Li metal anodes with a record performance of 4000 h of steady lithium plating/stripping. We further fabricate the prototype stable ASSLMBs using these halide SEs without any interfacial modifications, showing small internal cathode/SE resistance (19.48 Ω cm2), high average Coulombic efficiency (â¼99.48%), good rate capability (63 mAh g-1 at 1.5 C), and unprecedented cycling stability (87% capacity retention for 70 cycles at 0.5 C).
RESUMEN
Exploring new solid electrolytes (SEs) for lithium-ion conduction is significant for the development of rechargeable all-solid-state lithium batteries. Here, a lead-free organic-inorganic halide perovskite, MASr0.8Li0.4Cl3 (MA = methylammonium, CH3NH3 in formula), is reported as a new SE for Li-ion conduction due to its highly symmetric crystal structure, inherent soft lattice, and good tolerance for composition tunability. Via density functional theory calculations, we demonstrate that the hybrid perovskite framework can allow fast Li-ion migration without the collapse of the crystal structure. The influence of the lithium content in MASr1-xLi2xCl3 (x = 0.1, 0.2, 0.3, or 0.4) on Li+ migration is systematically investigated. At the lithium content of x = 0.2, the MASr0.8Li0.4Cl3 achieves the room-temperature lithium ionic conductivity of 7.0 × 10-6 S cm-1 with a migration energy barrier of â¼0.47 eV. The lithium-tin alloy (Li-Sn) symmetric cell exhibits stable electrochemical lithium plating/stripping for nearly 100 cycles, indicating the alloy anode compatibility of the MASr0.8Li0.4Cl3 SE. This lead-free organic-inorganic halide perovskite SE will open a new avenue for exploring new SEs.