Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Med Genomics ; 17(1): 95, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643142

RESUMEN

NSUN2-intellectual disability syndrome, also known as intellectual disability type 5 (MRT5), is an autosomal recessive disorder that is characterized by intellectual disability (ID), postnatal growth retardation, dysmorphic facies, microcephaly, short stature, developmental delay, language impairment and other congenital abnormalities. The disease is caused by mutations in the NSUN2 gene, which encodes a tRNA cytosine methyltransferase that has an important role in spindle assembly during mitosis and chromosome segregation. In this study, we recruited a family that had two individuals with ID. Whole exome sequencing was performed to identify a homozygous frameshift variant (c.1171_1175delACCAT(p.Thr391fs*18*)) in NSUN2 (NM_017755.5) in the proband. The varint was confirmed as segregating in his affected brother and his parents by Sanger sequencing. The individuals that we described showed a similar dysmorphology profile to that associated with MRT5. To analyze the correlations between genotypes of NSUN2 and phenotypes of individuals with ID, we examined 17 variants and the associated phenotypes from 32 ID individuals in current and previous studies. We concluded that mutations in NSUN2 cause a wide range of phenotypic defects. Although some clinical manifestations were highly variable, the core phenotypes associated with NSUN2 mutations were dysmorphic facies, microcephaly, short stature, ID, growth restriction, language impairment, hypotonia and delayed puberty. Our study expands the genetic spectrum of NSUN2 mutations and helps to further define the genotype-phenotype correlations in MRT5.


Asunto(s)
Enanismo , Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Microcefalia , Malformaciones del Sistema Nervioso , Masculino , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética , Facies , Mutación , Fenotipo , China , Linaje , Metiltransferasas/genética
2.
Heliyon ; 10(1): e23257, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163131

RESUMEN

The WDR19 gene has been reported to be involved in nephronophthisis-related ciliopathies such as isolated nephronophthisis 13 (NPHP13), Sensenbrenner syndrome, Jeune syndrome, Senior-Loken syndrome, Caroli disease, retinitis pigmentosa and Asthenoteratospermia. In the present study, we provided the detailed clinical characteristics and genetic analysis of a patient with four variants in WDR19 and TG, reviewed a comprehensive mutation analysis in the WDR19-related ciliopathies, discussed the relationship between genotype and phenotype, and compared the allele frequencies (AFs) of WDR19 variants depending on the ethnic background. We used whole-exome sequencing (WES) combined with bioinformatics analysis to investigate the genetic variants of a 3-year-old boy with common features of WDR19-associated NPHP13 and Caroli disease, bilateral central blindness, refractory epilepsy, and elevated thyroid stimulating hormone. A novel splice-donor variant, c.98+1G > C, and a recurrent missense variant, c.3533G > A, were identified in the WDR19 gene. We used effective mRNA analysis to verify the effects on pre-mRNA processing and to assess the pathogenicity of the splice-site variant. The patient also harbored compound heterozygous variants of the TG gene (c.4889A > G, c.274+2T > G). Of note, using a review of an in-house database, we identified four additional likely pathogenic WDR19 variants and estimated the overall AF of WDR19 mutations to be 0.0025 in the southern Chinese population. Our findings have expanded the allelic spectrum of mutations in the WDR19 gene and broadened the clinical phenotype spectrum of WDR19-related ciliopathies. The results have also provided new insights into the clinical heterogeneity of the disorder, which would be useful in accurate genetic counseling for affected individuals and carrier screening in a general population.

3.
BMC Med Genomics ; 17(1): 44, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297306

RESUMEN

OBJECTIVE: ALS2-related disorder involves retrograde degeneration of the upper motor neurons of the pyramidal tracts, among which autosomal recessive Infantile-onset ascending hereditary spastic paralysis (IAHSP) is a rare phenotype. In this study, we gathered clinical data from two Chinese siblings who were affected by IAHSP. Our aim was to assess the potential pathogenicity of the identified variants and analyze their clinical and genetic characteristics. METHOD: Here, Whole-exome sequencing (WES) was performed on proband to identify the candidate variants. Subsequently, Sanger sequencing was used to verify identified candidate variants and to assess co-segregation among available family members. Utilizing both silico prediction and 3D protein modeling, an analysis was conducted to evaluate the potential functional implications of the variants on the encoded protein, and minigene assays were performed to unravel the effect of the variants on the cleavage of pre-mRNA. RESULTS: Both patients were characterized by slurred speech, astasia, inability to walk, scoliosis, lower limb hypertonia, ankle clonus, contracture of joint, foot pronation and no psychomotor retardation was found. Genetic analysis revealed a novel homozygous variant of ALS2, c.1815G > T(p.Lys605Asn) in two Chinese siblings. To our knowledge, it is the first confirmed case of a likely pathogenic variant leading to IAHSP in a Chinese patient. CONCLUSION: This study broadens the range of ALS2 variants and has practical implications for prenatal and postnatal screening of IAHSR. Symptom-based diagnosis of IAHSP is frequently difficult for medical practitioners. WES can be a beneficial resource to identify a particular disorder when the diagnosis cannot be determined from the symptoms alone.


Asunto(s)
Esclerosis Amiotrófica Lateral , Factores de Intercambio de Guanina Nucleótido , Hermanos , Paraplejía Espástica Hereditaria , Femenino , Embarazo , Humanos , Mutación , Factores de Intercambio de Guanina Nucleótido/genética , Análisis Mutacional de ADN , Biología Molecular , China , Linaje
4.
Heliyon ; 10(6): e27946, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496842

RESUMEN

Background: Autosomal recessive intellectual developmental disorder-3 is caused by homozygous or compound heterozygous mutations in the CC2D1A gene. The disorder is characterized by intellectual disability (ID) and autism spectrum disorder (ASD). To date, 39 patients from 17 families with CC2D1A -related disorders have been reported worldwide, in whom only six pathogenic or likely pathogenic loss-of-function variants and three variants of uncertain significance (VUS) in the CC2D1A gene have been identified in these patients. Methods: We described a patient with ID from a non-consanguineous Chinese family and whole-exome sequencing (WES) was used to identify the causative gene. Results: The patient presented with severe ID and ASD, speech impairment, motor delay, hypotonia, slight facial anomalies, and finger deformities. Threatened abortion and abnormal fetal movements occurred during pregnancy with the proband but not his older healthy sister. WES analysis identified a homozygous nonsense variant, c.736C > T (p.Gln246Ter), in the CC2D1A gene. In addition, six novel likely pathogenic CC2D1A variants were identified by a retrospective review of the in-house database. Conclusions: This study expands the genetic and clinical spectra of CC2D1A-associated disorders, and may aid in increasing awareness of this rare condition. Our findings have provided new insights into the clinical heterogeneity of the disease and further phenotype-genotype correlation, which could help to offer scope for more accurate genetic testing and counseling to affected families.

5.
Heliyon ; 10(6): e27955, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524542

RESUMEN

Trichohepatoneurodevelopmental syndrome is an extremely uncommon autosomal recessive disorder resulting from variants in the CCDC47 gene, which encodes a Ca2+-binding endoplasmic reticulum (ER) transmembrane protein. To date, only four patients with CCDC47 deficiency have been reported, all of them with homozygous truncating CCDC47 variants. For this study, a Chinese family was recruited, which included a patient diagnosed with trichohepatoneurodevelopmental syndrome. Whole exome sequencing (WES) identified the proband's novel homozygous CCDC47 variation (NM_020198: c.634C > T(p.Arg212*). The variant was confirmed to be segregating in the proband and her unaffected relatives through Sanger sequencing. The patient described exhibited a clinical phenotype similar to that of patients with the CCDC47 variant. Compared to reported cases with CCDC47 pathogenic variants, our patients showed a novel complication of hearing impairment. In addition, brain abnormalities, small feet, bilateral hip dislocation, hip dysplasia, overlapping toes, pectus excavatum, scoliosis and narrow chest were not observed in our patient. We also examined five different variations and their corresponding phenotypes from five patients, both in current and previous research. Although some clinical manifestations of trichohepatoneurodevelopmental syndrome were highly variable, the most common phenotypes observed in these patients include microcephaly, profound intellectual disability, severe global development delay, pronounced growth restriction, hypotonia, woolly hair, facial dysmorphism, respiratory and visual abnormalities, gastrointestinal abnormalities, liver dysfunction, pruritus, skeletal and limb abnormalities, congenital heart defects and immunodeficiency. The present report is the first of a Chinese infant with homozygous variant in the CCDC47 gene. We expanded the genetic and phenotypic spectrum associated with trichohepatoneurodevelopmental syndrome.

6.
Mol Genet Genomic Med ; 12(2): e2408, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404251

RESUMEN

BACKGROUND: TNRC6B deficiency syndrome, also known as global developmental delay with speech and behavioral abnormalities (MIM 619243), is a rare autosomal dominant genetic disease mainly characterized by facial dysmorphism, developmental delay/intellectual disability (DD/ID), speech and language delay, fine and motor delay, attention deficit and hyperactivity disorder (ADHD), and variable behavioral abnormalities. It is caused by heterozygous variant in the TNRC6B gene (NM_001162501.2, MIM 610740), which encodes the trinucleotide repeat-containing adaptor 6B protein. METHODS: In this study, two Chinese patients with TNRC6B deficiency syndrome were recruited, and genomic DNA extraction from peripheral blood leukocytes of these parents and their family members was extracted for whole-exome sequencing and Sanger sequencing. RESULTS: Here, we report two unrelated Chinese patients diagnosed with TNRC6B deficiency syndrome caused by novel de novo likely pathogenic or pathogenic TNRC6B variants c.335C>T (p.Pro112Leu) and c.1632delC (p.Leu546fs*63), which expands the genetic spectrum of TNRC6B deficiency syndrome. The clinical features of the patients were DD/ID, delayed speech, ADHD, behavioral abnormalities, short stature, low body weight, café-au-lait spots, metabolic abnormalities, and facial dysmorphism including coarse facial features, sparse hair, frontal bossing, hypertelorism, amblyopia, strabismus, and downslanted palpebral fissures, which expands the phenotype spectrum associated with TNRC6B deficiency syndrome. CONCLUSION: This study expands the genotypic and phenotypic spectrum of TNRC6B deficiency syndrome. Our findings indicate that patients with TNRC6B deficiency syndrome should be monitored for growth and metabolic problems and therapeutic strategies should be developed to address these problems. Our report also suggests the clinical diversity of TNRC6B deficiency syndrome.


Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Proteínas de Unión al ARN , Humanos , Peso Corporal , Manchas Café con Leche/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Proteínas de Unión al ARN/genética , Habla
7.
Front Neurol ; 15: 1340458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356881

RESUMEN

Kleefstra syndrome (KLEFS) refers to a rare inherited neurodevelopmental disorder characterized by intellectual disability (ID), language and motor delays, behavioral abnormalities, abnormal facial appearance, and other variable clinical features. KLEFS is subdivided into two subtypes: Kleefstra syndrome-1 (KLEFS1, OMIM: 610253), caused by a heterozygous microdeletion encompassing the Euchromatic Histone Lysine Methyltransferase 1 (EHMT1) gene on chromosome 9q34.3 or pathogenic variants in the EHMT1 gene, and Kleefstra syndrome-2 (KLEFS2, OMIM: 617768), caused by pathogenic variants in the KMT2C gene. More than 100 cases of KLEFS1 have been reported with pathogenic variants in the EHMT1 gene. However, only 13 patients with KLEFS2 have been reported to date. In the present study, five unrelated Chinese patients were diagnosed with KLEFS2 caused by KMT2C variants through whole-exome sequencing (WES). We identified five different variants of the KMT2C gene in these patients: c.9166C>T (p.Gln3056*), c.9232_9247delCAGCGATCAGAACCGT (p.Gln3078fs*13), c.5068dupA (p.Arg1690fs*10), c.10815_10819delAAGAA (p.Lys3605fs*7), and c.6911_6912insA (p.Met2304fs*8). All five patients had a clinical profile similar to that of patients with KLEFS2. To analyze the correlation between the genotype and phenotype of KLEFS2, we examined 18 variants and their associated phenotypes in 18 patients with KLEFS2. Patients carrying KMT2C variants presented with a wide range of phenotypic defects and an extremely variable phenotype. We concluded that the core phenotypes associated with KMT2C variants were intellectual disability, facial dysmorphisms, language and motor delays, behavioral abnormalities, hypotonia, short stature, and weight loss. Additionally, sex may be one factor influencing the outcome. Our findings expand the phenotypic and genetic spectrum of KLEFS2 and help to clarify the genotype-phenotype correlation.

8.
Mol Genet Genomic Med ; 12(1): e2358, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284444

RESUMEN

BACKGROUND: Mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations is a rare neurological disorder that is associated with typical clinical and imaging features. The syndrome is caused by pathogenic variants in the MAST1 gene, which encodes a microtubule-associated protein that is predominantly expressed in postmitotic neurons in the developing nervous system. METHODS: Fetal DNA from umbilical cord blood samples and genomic DNA from peripheral blood lymphocytes were subjected to whole-exome sequencing. The potential causative variants were verified by Sanger sequencing. RESULTS: A 26-year-old primigravid woman was referred to our prenatal center at 25 weeks of gestation due to abnormal ultrasound findings in the brain of the fetus. The brain abnormalities included wide cavum septum pellucidum, shallow and incomplete bilateral lateral fissure cistern, bilateral dilated lateral ventricles, hyperplastic corpus callosum, lissencephaly, and cortical dysplasia. No obvious abnormalities were observed in the brainstem or cerebellum hemispheres, but the cerebellum vermis was small. Whole-exome sequencing identified a de novo, heterozygous missense variant, c.695T>C(p.Leu232Pro), in the MAST1 gene and a genetic diagnosis of mega-corpus-callosum syndrome was considered. CONCLUSION: This study is the first prenatal case of MAST1-related disorder reported in the Chinese population and has expanded the mutation spectrum of the MAST1 gene.


Asunto(s)
Vermis Cerebeloso , Leucoencefalopatías , Malformaciones del Desarrollo Cortical , Malformaciones del Sistema Nervioso , Embarazo , Femenino , Humanos , Adulto , Vermis Cerebeloso/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Cerebelo/anomalías , Malformaciones del Desarrollo Cortical/genética , Feto/anomalías , ADN , Discapacidades del Desarrollo
9.
Front Endocrinol (Lausanne) ; 14: 1176063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38523870

RESUMEN

Objective: To improve the accuracy of preimplantation genetic testing (PGT) in deletional α-thalassemia patients. Design: Article. Patients: fifty-two deletional α-thalassemia couples. Interventions: Whole genome amplification (WGA), Next-generation sequencing (NGS) and PCR mutation loci detection. Main outcome measures: WGA, Single nucleotide polymorphism (SNP) and PCR mutation loci detection results; Analysis of embryo chromosome copy number variation (CNV). Results: Multiple Displacement Amplification (MDA) and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) methods for PGT for deletional α-thalassemia. Blastocyst biopsy samples (n = 253) were obtained from 52 deletional α-thalassemia couples. The results of the comparison of experimental data between groups MALBAC and MDA are as follows: (i) The average allele drop-out (ADO) rate, MALBAC vs. MDA = 2.27% ± 3.57% vs. 0.97% ± 1.4%, P=0.451); (ii) WGA success rate, MALBAC vs. MDA = 98.61% vs. 98.89%, P=0.851; (iii) SNP haplotype success rate, MALBAC vs. MDA = 94.44% vs. 96.68%, P=0.409; (iv) The result of SNP haplotype analysis is consistent with that of Gap-PCR/Sanger sequencing results, MALBAC vs. MDA = 36(36/72, 50%) vs. 151(151/181, 83.43%), P=0; (v) Valid SNP loci, MALBAC vs. MDA = 30 ± 9 vs. 34 ± 10, P=0.02; (vi) The mean CV values, MALBAC vs. MDA = 0.12 ± 0.263 vs. 0.09 ± 0.40, P=0.916; (vii) The average number of raw reads, MALBAC vs. MDA =3244259 ± 999124 vs. 3713146 ± 1028721, P=0; (viii) The coverage of genome (%), MALBAC vs. MDA = 5.02 ± 1.09 vs. 5.55 ± 1.49, P=0.008. Conclusions: Our findings indicate that MDA is superior to MALBAC for PGT of deletional α-thalassemia. Furthermore, SNP haplotype analysis combined with PCR loci detection can improve the accuracy and detection rate of deletional α-thalassemia.


Asunto(s)
Diagnóstico Preimplantación , Talasemia alfa , Embarazo , Femenino , Humanos , Diagnóstico Preimplantación/métodos , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Variaciones en el Número de Copia de ADN , Pruebas Genéticas/métodos , Alelos
10.
Arch. endocrinol. metab. (Online) ; 60(4): 323-327, Aug. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-792946

RESUMEN

ABSTRACT Objective Pendred syndrome (PS) is an autosomal recessive disorder characterised by sensorineural hearing loss and thyroid dyshormonogenesis. It is caused by biallelic mutations in the SLC26A4 gene encoding for pendrin. Hypothyroidism in PS can be present from birth and therefore diagnosed by neonatal screening. The aim of this study was to examine the SLC26A4 mutation spectrum and prevalence among congenital hypothyroidism (CH) patients in the Guangxi Zhuang Autonomous Region of China and to establish how frequently PS causes hearing impairment in our patients with CH. Subjects and methods Blood samples were collected from 192 CH patients in Guangxi Zhuang Autonomous Region, China, and genomic DNA was extracted from peripheral blood leukocytes. All exons of the SLC26A4 gene together with their exon-intron boundaries were screened by next-generation sequencing. Patients with SLC26A4 mutations underwent a complete audiological evaluation including otoscopic examination, audiometry and morphological evaluation of the inner ear. Results Next generation sequencing analysis of SLC26A4 in 192 CH patients revealed five different heterozygous variations in eight individuals (8/192, 4%). The prevalence of SLC26A4 mutations was 4% among studied Chinese CH. Three of the eight were diagnosed as enlargement of the vestibular aqueduct (EVA), no PS were found in our 192 CH patients. The mutations included one novel missense variant p.P469S, as well as four known missense variants, namely p.V233L, p.M147I, p.V609G and p.D661E. Of the eight patients identified with SLC26A4 variations in our study, seven patients showed normal size/location of thyroid gland, and one patients showed a decreased size one. Conclusions The prevalence of SLC26A4 pathogenic variants was 4% among studied Chinese patients with CH. Our study expanded the SLC26A4 mutation spectrum, provided the best estimation of SLC26A4 mutation rate for Chinese CH patients and indicated the rarity of PS as a cause of CH.


Asunto(s)
Humanos , Masculino , Femenino , Recién Nacido , Proteínas de Transporte de Membrana/genética , Pruebas Genéticas/métodos , Bocio Nodular/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Tiroxina/sangre , Acueducto Vestibular/anomalías , Tirotropina/sangre , China/epidemiología , Prevalencia , Estudios de Cohortes , Tamizaje Neonatal/métodos , Transportadores de Sulfato , Bocio Nodular/epidemiología , Pérdida Auditiva Sensorineural/epidemiología
11.
Arq. bras. endocrinol. metab ; 58(8): 828-832, 11/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-729793

RESUMEN

Objective Dyshormonogenetic congenital hypothyroidism (CH) was reported to be associated with a mutation in the sodium iodide symporter (NIS) gene. The present study was undertaken in the Guangxi Zhuang Autonomous Region of China, to determine the nature and frequency of NIS gene mutations among patients with CH due to dyshormonogenesis. Subjects and methods: Blood samples were collected from 105 dyshormonogenetic CH patients in Guangxi Zhuang Autonomous Region, China, and genomic DNA was extracted from peripheral blood leukocytes. All exons of the NIS gene together with their exon-intron boundaries were screened by next-generation sequencing. Results Two silent variations (T221T and T557T) and one missense variation (M435L), as well as two polymorphisms (rs200587561 and rs117626343) were found. Conclusions Our results indicate that the NIS mutation rate is very low in the Guangxi Zhuang Autonomous Region, China, and it is necessary to study mutations of other genes that have major effects on thyroid dyshormonogenesis and have not as yet been studied in this population. .


Objetivo O hipotireoidismo congênito disormonogenético (CH) foi relatado como associado a uma mutação no gene simportador sódio/iodeto (NIS). O presente estudo foi feito na região autônoma de Guangxi Zhuang na China para se determinar a natureza e a frequência das mutações no gene NIS entre pacientes com CH causado por disormonogênese. Sujeitos e métodos: Amostras de sangue foram coletadas de 105 pacientes com CH disormonogenéticos e o DNA genômico foi extraído de leucócitos do sangue periférico. Todos os éxons do gene NIS, junto com seus limites éxon-íntron, foram analisados por sequenciamento de nova geração. Resultados Foram encontradas duas variações silenciosas (T221T e T557T) e uma variação missense (M435L), assim como dois polimorfismos (rs200587561 e rs117626343). Conclusões Nossos resultados indicam que a taxa de mutação em NIS é muito baixa na região de Guangxi Zhuang. É necessário estudar mutações de outros genes que tenham efeitos maiores na disormonogênese da tiroide e que ainda não tenham sido estudados nesta população. .


Asunto(s)
Humanos , Recién Nacido , Hipotiroidismo Congénito/genética , Frecuencia de los Genes/genética , Mutación , Simportadores/genética , China , Estudios de Cohortes , ADN , Exones/genética , Tamizaje Neonatal , Reacción en Cadena de la Polimerasa , Polimorfismo Genético/genética , Análisis de Secuencia de Proteína/métodos , Simportadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA