RESUMEN
BACKGROUND This study was designed to investigate the role of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the proliferation as well as apoptosis of human umbilical vein endothelial cells (HUVECs), to offer a basis for therapy of hypertension. MATERIAL AND METHODS The lncRNA MALAT1 expression, hsa-miR-124-3p, hsa-miR-135a-5p, hsa-miR-135b-5p, and hsa-miR-455-5p in plasma were measured from 230 patients with hypertension and 230 non-hypertensive controls. The mechanism for lncRNA MALAT1 modulating the proliferation and apoptosis of HUVECs was explored by cell transfection, Cell Counting Kit-8 (CCK-8), quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and dual-luciferase reporter assays. RESULTS The expression of hsa-miR-124-3p and hsa-miR-135a-5p was reduced and the expression of lncRNA MALAT1 was increased in the plasma of hypertensive patients. Moreover, the plasma levels of hsa-miR-124-3p and hsa-miR-135a-5p of hypertensive patients were negatively correlated with lncRNA MALAT1 (r=-0.64, -0.72; P<0.01, P<0.01, respectively). The level of nuclear receptor subfamily 3, group C, member 2 (NR3C2) protein was negatively correlated with hsa-miR-124-3p and hsa-miR-135a-5p (r=-0.74, -0.84; P<0.01, P<0.01, respectively). The proliferation of HUVECs was inhibited after the inhibition of MALAT. Additionally, after knocking down MALAT, the levels of hsa-miR-124-3p and hsa-miR-135a-5p in HUVECs were markedly increased, while the expression level of NR3C2 protein was decreased. The apoptotic rate of HUVECs after the transfection of MALAT1 small interfering RNA (si-MALAT1) (3.64±0.21%) was significantly reduced compared to that of transfected si-MALAT1 no template control (NC) (3.76±0.19%) and the control group (10.51±1.24%). CONCLUSIONS LncRNA MALAT1 regulates proliferation and apoptosis of HUVECs through the hsa-miR-124-3p/NR3C2 and/or hsa-miR-135a-5p/NR3C2 axis.
Asunto(s)
Hipertensión Esencial/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Receptores de Mineralocorticoides/genética , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/genética , Estudios de Casos y Controles , Proliferación Celular/genética , Endotelio Vascular/citología , Endotelio Vascular/patología , Hipertensión Esencial/patología , Femenino , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Persona de Mediana EdadRESUMEN
A rapid, simple, and sensitive immunochromatographic test strip has been developed for testing residues of ciprofloxacin (CIP). A specific and sensitive monoclonal antibody (mAb) for CIP was generated by immunizing BALB/c mice with well-characterized CIP-Keyhole limpet haemocyanin. Under the optimized conditions, the cut-off limits of test strips for CIP were found to be 5 ng/mL in phosphate-buffered saline and 2.5 ng/mL in milk samples. Each test can be evaluated within 3 min. The cross-reactivities of the CIP test strip to enrofloxacin (ENR), norfloxacin (NOR), nadifloxacin (NDF), danofloxacin (DANO), pefloxacin (PEX), lomefloxacin (LOME), enoxacin (ENO), and sarafloxacin (SAR) were 71.4%, 71.4%, 66%, 50%, 33%, 20%, 12.5%, and 6.25%, respectively. The data indicate that the method is sensitive, specific, and has the advantages of simplicity and speed, therefore, this test strip is a useful screening method for the detection of CIP residues in milk samples.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Cromatografía de Afinidad/instrumentación , Ciprofloxacina/análisis , Análisis de los Alimentos/instrumentación , Contaminación de Alimentos/análisis , Leche/química , Animales , Antibacterianos/análisis , Antibacterianos/inmunología , Bovinos , Ciprofloxacina/inmunología , Diseño de Equipo , Análisis de Falla de Equipo , Tiras ReactivasRESUMEN
BACKGROUND: Trehalose, a non-reducing disaccharide, which involves in the acquisition of various stress tolerance, while hydrogen sulfide (H2S) is considered as a cell signal molecule, but H2S-induced heat tolerance and involvement of trehalose in plants is still unclear. RESULTS: In present study, pretreatment with hydrogen sulfide donor sodium hydrosulfide (NaHS) markedly increased the accumulation of endogenous H2S in maize seedlings under normal culture conditions, which in turn improved survival percentage of maize seedlings and mitigated increase in electrolyte leakage and malonaldehyde (MDA) accumulation under heat stress. In addition, treatment with NaHS activated increase in the activity of trehalose-6-phosphate phosphatase (TPP) under normal culture conditions, followed by induced the accumulation of endogenous trehalose, but this accumulation was eliminated by addition of sodium citrate, an inhibitor of TPP. During the process of heat stress, maize seedlings treated with NaHS maintained higher TPP activity and trehalose content than those of control. On the other hand, exogenous application of trehalose also increased the content of endogenous trehalose in maize seedlings under normal culture conditions, alleviated increase in electrolyte leakage and MDA accumulation under heat stress, which in turn improved survival percentage of maize seedlings, and the heat tolerance induced by trehalose was enhanced by exogenous supplement of NaHS, but exogenous trehalose treatment had not significant effect on the accumulation of endogenous hydrogen sulfide in maize seedlings. CONCLUSION: These data suggest that sodium hydrosulfide pretreatment could improve heat tolerance of maize seedlings and this improvement may be involved in trehalose accumulation by activating TPP activity.