Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147772

RESUMEN

Wildfires and post-fire management exert profound effects on soil properties and microbial communities in forest ecosystems. Understanding microbial community recovery from fire and what the best post-fire management should be is very important but needs to be sufficiently studied. In light of these gaps in our understanding, this study aimed to assess the short-term effects of wildfire and post-fire management on both bacteria and fungi community composition, diversity, structure, and co-occurrence networks, and to identify the principal determinants of soil processes influencing the restoration of these communities. Specifically, we investigated soil bacterial and fungal community composition, diversity, structure, and co-occurrence networks in lower subtropical forests during a short-term (<3 years) post-fire recovery period at four main sites in Guangdong Province, southern China. Our results revealed significant effects of wildfires on fungal community composition, diversity, and co-occurrence patterns. Network analysis indicated reduced bacterial network complexity and connectivity post-fire, while the same features were enhanced in fungal networks. However, post-fire management effects on microbial communities were negligible. Bacterial diversity correlated positively with soil microbial biomass nitrogen, soil organic carbon, and soil total nitrogen. Conversely, based on the best random forest model, fungal community dynamics were negatively linked to nitrate-nitrogen and soil water content. Spearman's correlation analysis suggested positive associations between bacterial networks and soil factors, whereas fungal networks exhibited predominantly negative associations. This study elucidates the pivotal role of post-fire management in shaping ecological outcomes. Additionally, it accentuates the discernible distinctions between bacterial and fungal responses to fire throughout a short-term recovery period. These findings contribute novel insights that bear significance in evaluating the efficacy of environmental management strategies.


Asunto(s)
Incendios , Microbiota , Ecosistema , Suelo/química , Carbono , Bacterias , Nitrógeno/análisis , Microbiología del Suelo
2.
J Phys Chem B ; 110(43): 21958-65, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17064165

RESUMEN

FT-IR, FT-Raman and electronic absorption spectroscopies were utilized in conjunction with density functional theory (DFT) calculations to investigate the ground and excited states of self-assembled dinuclear dimeric helicates (ZnL)2 and (NiL)2 [L = bis(2,4-dimethyldipyrrin-3-yl)methane]. These studies afford a detailed description of the ground-state geometric and electronic structures of (ZnL)2 and (NiL)2 and provide a comparison with similar geometrical metal-porphyrins. The results demonstrate that enlarging the basis set used in the DFT calculations results in an obvious alteration of the calculated bond lengths but negligible alteration of the calculated bond angles. The predicted spectra are in good agreement with the experimental ones with the deviations generally less than 30 cm(-1). In comparison with vibrational spectra of metal-porphyrins, the breathing vibration of the pyrrole ring is shifted by over 100 cm(-1) toward higher wavenumber due to local conjugation of molecular geometry. Time-dependent density functional theory (TD-DFT) provides a good description of the excitation energy. Because of the break in symmetry, the absorption band (corresponding to the Q-band of porphyrin) of (ZnL)2 and (NiL)2 is no longer weak. Local conjugation makes the absorption wavelength of (NiL)2 and (ZnL)2 shift to the blue compared with those of NiP and ZnP.

3.
J Hazard Mater ; 133(1-3): 85-91, 2006 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-16309827

RESUMEN

Enhancement of beta-cyclodextrin (beta-CD) on TiO(2) photocatalytic degradation of bisphenol E (BPE, bis(4-hydroxyphenyl)ethane) was investigated under a 250 W metal halide lamp (lambda> or =365 nm) in this work. In the system of photocatalytic degradation of BPE, the photodegradation rate of BPE in aqueous solutions containing beta-CD and TiO(2) was obviously faster than that in aqueous solutions containing only TiO(2). After 40 min of irradiation, beta-CD could increase the photodegradation efficiency by about 26% for 10 mg l(-1) BPE in the UV-vis/TiO(2) system and the photodegradation of 2.5-20.0 mg l(-1) BPE in aqueous solutions was found to follow pseudo-first-order law and the adsorption constant and the reaction rate constant of BPE in the system containing beta-CD and TiO(2) are obviously higher than those in the system containing only TiO(2), the influence factors on photodegradation of BPE were studied and described in details, such as beta-CD concentration, pH, BPE initial concentration and gas medium. The formation of CO(2) as a result of mineralization of BPE was observed during the photodegradation process. After 120 min of irradiation, the mineralization efficiency of BPE reached 61% in the presence of beta-CD, whereas mineralization efficiency was only 23% in the absence of beta-CD. The enhancement of photodegradation of BPE could be dependent on the enhancement of adsorption of BPE on TiO(2) surface and moderate inclusion-depth of BPE in the beta-CD cavity.


Asunto(s)
Fenoles/química , Fotólisis , Titanio/química , beta-Ciclodextrinas/química , Adsorción , Catálisis , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno , Cinética , Minerales/química , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Soluciones/química , Análisis Espectral , Suspensiones
4.
J Phys Chem A ; 109(12): 2878-86, 2005 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16833605

RESUMEN

The FT-Raman and UV-visible spectra of (12S)-1,4,7,10-tetraazadicyclo[10,3,0]-pentadecane-3,11-dione and its derivatives were obtained and discussed. The harmonic vibrational wavenumbers and the corresponding Raman scattering activities in their electronic ground-states were calculated at the DFT-B3LYP/6-31G(d) level of theory. The calculated wavenumbers were then scaled and compared with the experimental values. The 7-(2,4-dinitrophenyl)-(12S)-1,4,7,10-tetrazadicyclo[10,3,0]-pentadecane-3,11-dione derivative has mainly an amide (II) character, while the others have an amide (I) character. Moreover, the different substituents do not cause a significant shift of the vibrational mode of the macrocyclic plane. The electronic vertical excitation energy and the oscillator strength were determined with the help of TDDFT calculations and by employing pure (BLYP) and hybrid (B3LYP, B3P86, and mPW1PW91) functionals together with the 6-31G(d) basis set. The BLYP functional reproduces the UV-vis absorption spectra better than the B3LYP, B3P86, or mPW1PW91 hybrid functionals. A dimolecular model, which considers hydrogen-bonded structures, proved that strong inter- and intramolecular hydrogen bonds are present in these compounds. Due to the transannular effect, the UV-vis absorption spectrum of macrocyclic dioxotetraamines is completely different from that of single amide compounds.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Lactamas Macrocíclicas/química , Electrones , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA