Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37874671

RESUMEN

Metal-organic frameworks (MOFs)-derived nanocomposite has attracted extensive attention due to its tunable nanoscale cavities and high chemical tailorability. Herein, with the aim of developing a sensitive electrochemical sensor for p-nitrophenol, a novel MOFs-derived nanocomposite was prepared by the solvothermal method using Zr-MOFs, thiourea, and sodium molybdate as raw materials. By controlling the growth mode and reaction time, the nanohybrids displayed a superstructure composed of MOFs-derived carbon (MOFs-C) and MoS2. Scanning electron microscopy images indicated that MOFs-C/MoS2 was a flower-like porous sphere. Transmission electron microscopic images showed that the MOFs-C/MoS2 had a unique arrow target-like structure. The porous structure held great promise for the fast mass transfer into the material, while the layer-by-layer distributed carbon and MoS2 provided a great structure for the synergistic catalysis. The electrochemical oxidation of (hydroxyamino)phenol to nitrosophenol, which is an important process for the electrochemical behavior of p-nitrophenol, can be selectively catalyzed by the MOFs-C/MoS2. Therefore, the electrochemical sensor based on the MOFs-C/MoS2 material exhibited excellent analytical performance in the determination of p-nitrophenol. Using the technique of square wave voltammetry, the peak current varied quantitatively with the presence of p-nitrophenol in the wide concentration range of 0.5-500 µM. Furthermore, the electrochemical sensor exhibited good practicability in real sample analysis.

2.
Anal Chim Acta ; 1162: 338476, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33926698

RESUMEN

Labeling with redox reporter is often required in developing electrochemical bioassay for most proteins or nucleic acid biomarkers. Herein, a label-free ratiometric immunosensing platform is firstly developed by integrating the antibody-conjugated nanochannels with a smart modified electrode. The electrode modifier is the composite of C60, tetraoctylammonium bromide (TOA+) and Prussian blue (PB). Cyclic voltammograms of the ultimate C60-TOA+/PB modified electrode exhibited two pairs of peaks at 0.15 V and -0.13 V, ascribing to the redox of PB and C60, respectively. With the addition of K3[Fe(CN)6] in the electrolyte solution, the peaks of PB decreased due to the adsorption of [Fe(CN)6]3- while the peaks of C60 increased because of the formation of the ternary complex (TC) C60-TOA+-[Fe(CN)6]3-. As a result, the peak current ratio IPB/ITC decreased gradually with the increment of the concentration of [Fe(CN)6]3-. For the nanochannels-based immunosensing platform, the steric hindrance of the bioconjugated nanochannels varied with the loading amount of the target CA125, and thus [Fe(CN)6]3- passing through the channels was quantitatively affected. And the higher CA125 level was, the less [Fe(CN)6]3- concentration was. And thus, the ratio IPB/ITC monitored at the C60-TOA+/PB modified electrode increased with the increase of the concentration of CA125. The ratiometric immunoassay featured a linear calibration range from 1.0 U mL-1 to 100 U mL-1 with a low detection limit of 0.86 U mL-1. In addition, the ratiometric immunosensing platform demonstrated good specificity and stability as well as acceptable accuracy in overcoming the effect of electrode passivation which was an inherent problem of electroanalysis.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Antígeno Ca-125 , Electrodos , Inmunoensayo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA