Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 79(5): 728-740.e6, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32721385

RESUMEN

Cytosine base editors (CBEs) generate C-to-T nucleotide substitutions in genomic target sites without inducing double-strand breaks. However, CBEs such as BE3 can cause genome-wide off-target changes via sgRNA-independent DNA deamination. By leveraging the orthogonal R-loops generated by SaCas9 nickase to mimic actively transcribed genomic loci that are more susceptible to cytidine deaminase, we set up a high-throughput assay for assessing sgRNA-independent off-target effects of CBEs in rice protoplasts. The reliability of this assay was confirmed by the whole-genome sequencing (WGS) of 10 base editors in regenerated rice plants. The R-loop assay was used to screen a series of rationally designed A3Bctd-BE3 variants for improved specificity. We obtained 2 efficient CBE variants, A3Bctd-VHM-BE3 and A3Bctd-KKR-BE3, and the WGS analysis revealed that these new CBEs eliminated sgRNA-independent DNA off-target edits in rice plants. Moreover, these 2 base editor variants were more precise at their target sites by producing fewer multiple C edits.


Asunto(s)
Citidina Desaminasa/genética , Citosina , Edición Génica/métodos , Antígenos de Histocompatibilidad Menor/genética , Oryza/genética , Citosina/química , Genes de Plantas , Humanos , Mutación , ARN Guía de Kinetoplastida/química , ARN de Planta/química , Reproducibilidad de los Resultados
2.
Nucleic Acids Res ; 52(D1): D798-D807, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37889020

RESUMEN

Influenza viruses undergo frequent genomic mutations, leading to potential cross-species transmission, phenotypic changes, and challenges in diagnostic reagents and vaccines. Accurately evaluating and predicting the risk of such variations remain significant challenges. To address this, we developed the VarEPS-Influ database, an influenza virus variations risk evaluation system (VarEPS-Influ). This database employs a 'multi-dimensional evaluation of mutations' strategy, utilizing various tools to assess the physical and chemical properties, primary, secondary, and tertiary structures, receptor affinity, antibody binding capacity, antigen epitopes, and other aspects of the variation's impact. Additionally, we consider space-time distribution, host species distribution, pedigree analysis, and frequency of mutations to provide a comprehensive risk evaluation of mutations and viruses. The VarEPS-Influ database evaluates both observed variations and virtual variations (variations that have not yet occurred), thereby addressing the time-lag issue in risk predictions. Our current one-stop evaluation system for influenza virus genomic variation integrates 1065290 sequences from 224 927 Influenza A, B and C isolates retrieved from public resources. Researchers can freely access the data at https://nmdc.cn/influvar/.


Asunto(s)
Bases de Datos Genéticas , Gripe Humana , Orthomyxoviridae , Humanos , Anticuerpos/genética , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Mutación , Orthomyxoviridae/genética , Variación Genética , Genoma Viral , Medición de Riesgo
3.
Nucleic Acids Res ; 50(D1): D888-D897, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634813

RESUMEN

The genomic variations of SARS-CoV-2 continue to emerge and spread worldwide. Some mutant strains show increased transmissibility and virulence, which may cause reduced protection provided by vaccines. Thus, it is necessary to continuously monitor and analyze the genomic variations of SARS-COV-2 genomes. We established an evaluation and prewarning system, SARS-CoV-2 variations evaluation and prewarning system (VarEPS), including known and virtual mutations of SARS-CoV-2 genomes to achieve rapid evaluation of the risks posed by mutant strains. From the perspective of genomics and structural biology, the database comprehensively analyzes the effects of known variations and virtual variations on physicochemical properties, translation efficiency, secondary structure, and binding capacity of ACE2 and neutralizing antibodies. An AI-based algorithm was used to verify the effectiveness of these genomics and structural biology characteristic quantities for risk prediction. This classifier could be further used to group viral strains by their transmissibility and affinity to neutralizing antibodies. This unique resource makes it possible to quickly evaluate the variation risks of key sites, and guide the research and development of vaccines and drugs. The database is freely accessible at www.nmdc.cn/ncovn.


Asunto(s)
COVID-19/virología , Bases de Datos Factuales , Mutación , SARS-CoV-2/genética , Algoritmos , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/metabolismo , Inteligencia Artificial , Cartilla de ADN , Genoma Viral , Humanos
4.
BMC Genomics ; 23(1): 312, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439925

RESUMEN

BACKGROUND: Dandruff is a chronic, recurring, and common scalp problem that is caused by several etiopathogeneses with complex mechanisms. Management of this condition is typically achieved via antifungal therapies. However, the precise roles played by microbiota in the development of the condition have not been elucidated. Despite their omnipresence on human scalp little is known about the co-occurrence/co-exclusion network of cutaneous microbiota. RESULTS: We characterized the scalp and hair surface bacterial and fungal communities of 95 dandruff-afflicted and healthy individuals residing in China. The degree distributions of co-occurrence/co-exclusion network in fungi-bacteria and bacteria-bacteria were higher in the healthy group (P < 0.0001), whereas the betweenness values are higher in the dandruff group (P < 0.01). Meanwhile, the co-occurrence/co-exclusion network among fungi-fungi and fungi-bacteria showed that compared to the healthy group, the dandruff group had more positive links (P < 0.0001). In addition, we observed that Malassezia slooffiae, Malassezia japonica and Malassezia furfur, were more abundant in the dandruff group than in the healthy group. These microbiota were co-exclusion by either multiple bacterial genera or Malassezia sp. in healthy group. The lactic acid bacteria on the scalp and hair surface, especially the genera Lactobacillus and Lactococcus, exhibit a negative correlation with multiple bacterial genera on the scalp and hair surface. Lactobacillus plantarum and Pediococcus lactis isolated on the healthy human scalp can inhibit the growth of Staphylococcus epidermidis in vitro. CONCLUSIONS: We showed that microbial networks on scalp and hair surface with dandruff were less integrated than their healthy counterparts, with lower node degree and more positive and stronger links which were deemed to be unstable and may be more susceptible to environmental fluctuations. Lactobacillus bacteria have extensive interactions with other bacteria or fungi in the scalp and hair surface micro-ecological network and can be used as targets for improving scalp health.


Asunto(s)
Caspa , Microbiota , Bacterias , Caspa/microbiología , Hongos/genética , Humanos , Microbiota/genética , Cuero Cabelludo/microbiología
5.
Plant J ; 97(2): 296-305, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30288819

RESUMEN

In eukaryotes, alternative splicing (AS) greatly expands the diversity of transcripts. However, it is challenging to accurately determine full-length splicing isoforms. Recently, more studies have taken advantage of Pacific Bioscience (PacBio) long-read sequencing to identify full-length transcripts. Nevertheless, the high error rate of PacBio reads seriously offsets the advantages of long reads, especially for accurately identifying splicing junctions. To best capitalize on the features of long reads, we used Illumina RNA-seq reads to improve PacBio circular consensus sequence (CCS) quality and to validate splicing patterns in the rice transcriptome. We evaluated the impact of CCS accuracy on the number and the validation rate of splicing isoforms, and integrated a comprehensive pipeline of splicing transcripts analysis by Iso-Seq and RNA-seq (STAIR) to identify the full-length multi-exon isoforms in rice seedling transcriptome (Oryza sativa L. ssp. japonica). STAIR discovered 11 733 full-length multi-exon isoforms, 6599 more than the SMRT Portal RS_IsoSeq pipeline did. Of these splicing isoforms identified, 4453 (37.9%) were missed in assembled transcripts from RNA-seq reads, and 5204 (44.4%), including 268 multi-exon long non-coding RNAs (lncRNAs), were not reported in the MSU_osa1r7 annotation. Some randomly selected unreported splicing junctions were verified by polymerase chain reaction (PCR) amplification. In addition, we investigated alternative polyadenylation (APA) events in transcripts and identified 829 major polyadenylation [poly(A)] site clusters (PACs). The analysis of splicing isoforms and APA events will facilitate the annotation of the rice genome and studies on the expression and polyadenylation of AS genes in different developmental stages or growth conditions of rice.


Asunto(s)
Oryza/genética , Empalme del ARN , ARN Largo no Codificante/genética , Transcriptoma , Empalme Alternativo , ADN Complementario/genética , Exones/genética , Poliadenilación/genética , ARN Mensajero/genética , ARN de Planta/genética , RNA-Seq
6.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23485966

RESUMEN

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Asunto(s)
Adaptación Fisiológica/genética , Cestodos/genética , Genoma de los Helmintos/genética , Parásitos/genética , Animales , Evolución Biológica , Cestodos/efectos de los fármacos , Cestodos/fisiología , Infecciones por Cestodos/tratamiento farmacológico , Infecciones por Cestodos/metabolismo , Secuencia Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efectos de los fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helminto/genética , Genes Homeobox/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Hymenolepis/genética , Redes y Vías Metabólicas/genética , Terapia Molecular Dirigida , Parásitos/efectos de los fármacos , Parásitos/fisiología , Proteoma/genética , Células Madre/citología , Células Madre/metabolismo , Taenia solium/genética
7.
BMC Plant Biol ; 18(1): 157, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30081823

RESUMEN

BACKGROUND: Flowering time is a key trait for regional adaption and seed production in rice (Oryza sativa L.). Forward and reverse genetic studies have characterized a number of flowering-time genes. However, co-expression analysis has not been used to identify the flowering-time genes. RESULTS: We predicted a G2-like family transcription factor, OsPHL3, by co-expression networks analysis with photoperiodic flowering pathway genes. OsPHL3 contains a MYB-CC domain, and was localized in the nucleus with transcriptional activation potential. OsPHL3 was mainly expressed in the leaves and exhibited a circadian rhythmic expression pattern. Rice lines overexpressing OsPHL3 showed a delayed flowering time in the genetic background of TP309 under both long-day (Beijing) and short-day (Hainan) conditions. By contrast, the knockout rice lines of OsPHL3 by CRISPR/Cas9 technology promoted flowering time regardless of genetic backgrounds (i.e. Nipponbare and TP309) or day length. Further analysis indicated that OsPHL3 delayed flowering time by down-regulating the expression of Hd3a and RFT1 through promoting Hd1 under long-day conditions (LDs), or suppressing Ehd1/Hd1 under short-day conditions (SDs). CONCLUSIONS: Our results suggested that co-expression analysis is a useful strategy for identifying novel flowering-time genes in rice.


Asunto(s)
Flores/genética , Oryza/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Flores/crecimiento & desarrollo , Técnicas de Silenciamiento del Gen , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fotoperiodo , Filogenia , Proteínas de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Genética Inversa , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/fisiología , Transcriptoma
8.
Biochem Biophys Res Commun ; 464(1): 176-81, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26116530

RESUMEN

Seed germination is a crucial stage for plant development and agricultural production. To investigate its complex regulation process, the RNA-Seq study of rice embryo was conducted at three time points of 0, 12 and 48 h post imbibition (HPI). Dynamic transcriptional alterations were observed, especially in the early stage (0-12 HPI). Seed related genes, especially those encoding desiccation inducible proteins and storage reserves in embryo, decreased drastically after imbibition. The expression profiles of phytohormone related genes indicated distinct roles of abscisic acid (ABA), gibberellin (GA) and brassinosteroid (BR) in germination. Moreover, network analysis revealed the importance of protein phosphorylation in phytohormone interactions. Network and gene ontology (GO) analyses suggested that transcription factors (TFs) played a regulatory role in functional transitions during germination, and the enriched TF families at 0 HPI implied a regulation of epigenetic modification in dry seeds. In addition, 35 germination-specific TF genes in embryo were identified and seven genes were verified by qRT-PCR. Besides, enriched TF binding sites (TFBSs) supported physiological changes in germination. Overall, this study expands our comprehensive knowledge of multiple regulation factors underlying rice seed germination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Germinación/genética , Oryza/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Semillas/genética , Ácido Abscísico/metabolismo , Brasinoesteroides/metabolismo , Difusión , Epigénesis Genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Giberelinas/metabolismo , Anotación de Secuencia Molecular , Oryza/embriología , Oryza/metabolismo , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/embriología , Semillas/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Agua/metabolismo , Humectabilidad
9.
Appl Environ Microbiol ; 81(4): 1375-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25501482

RESUMEN

The bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for 1% and 0.1% of the total non-rRNAs, respectively. The majority (98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus and Fibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the genera Ruminococcus, Prevotella, and Fibrobacter. Most (82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the genera Ruminococcus, Fibrobacter, and Prevotella are predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen.


Asunto(s)
Bacterias/metabolismo , Bovinos/microbiología , Pared Celular/metabolismo , Plantas/metabolismo , Polisacáridos/metabolismo , Rumen/microbiología , Alimentación Animal/análisis , Animales , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bovinos/metabolismo , Celulasas/metabolismo , Microbiota , Datos de Secuencia Molecular , Filogenia , Rumen/metabolismo
10.
Ecotoxicology ; 24(2): 330-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25398503

RESUMEN

We evaluated the transcriptome dynamics of the freshwater river snail Bellamya aeruginosa exposed to 17ß-estradiol (E2) using the Roche/454 GS-FLX platform. In total, 41,869 unigenes, with an average length of 586 bp, representing 36,181 contigs and 5,688 singlets were obtained. Among them, 18.08, 36.85, and 25.47 % matched sequences in the GenBank non-redundant nucleic acid database, non-redundant protein database, and Swiss protein database, respectively. Annotation of the unigenes with gene ontology, and then mapping them to biological pathways, revealed large groups of genes related to growth, development, reproduction, signal transduction, and defense mechanisms. Significant differences were found in gene expression in both liver and testicular tissues between control and E2-exposed organisms. These changes in gene expression will help in understanding the molecular mechanisms of the response to physiological stress in the river snail exposed to estrogen, and will facilitate research into biological processes and underlying physiological adaptations to xenoestrogen exposure in gastropods.


Asunto(s)
Estradiol/toxicidad , Estrógenos/toxicidad , Caracoles/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Datos de Secuencia Molecular , Caracoles/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-39160620

RESUMEN

Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change. The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic diversity. Here, by analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to archive the genomic and functional diversity of cold seep microbiomes. The CSMD includes over 49 million non-redundant genes and 3175 metagenome-assembled genomes, which represent 1895 species spanning 105 phyla. In addition, beta diversity analysis indicates that both the sampling site and cold seep type have a substantial impact on the prokaryotic microbiome community composition. Heterotrophic and anaerobic metabolisms are prevalent in microbial communities, accompanied by considerable mixotrophs and facultative anaerobes, highlighting the versatile metabolic potential in cold seeps. Furthermore, secondary metabolic gene cluster analysis indicates that at least 98.81% of the sequences potentially encode novel natural products, with ribosomally synthesized and post-translationally modified peptides being the predominant type widely distributed in archaea and bacteria. Overall, the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.


Asunto(s)
Archaea , Metagenoma , Microbiota , Metagenoma/genética , Archaea/genética , Archaea/metabolismo , Archaea/clasificación , Microbiota/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Productos Biológicos/metabolismo , Frío , Filogenia , Agua de Mar/microbiología , Metagenómica/métodos , Biodiversidad
12.
BMC Genomics ; 14: 346, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23706002

RESUMEN

BACKGROUND: The presence of homoeologous sequences and absence of a reference genome sequence make discovery and genotyping of single nucleotide polymorphisms (SNPs) more challenging in polyploid crops. RESULTS: To address this challenge, we constructed reduced representation libraries (RRLs) for two Brassica napus inbred lines and their 91 doubled haploid (DH) progenies using a modified ddRADseq technique. A bioinformatics pipeline termed RFAPtools was developed to discover and genotype SNPs and presence/absence variations (PAVs). Using this pipeline, a pseudo-reference sequence (PRF) containing 180,991 sequence tags was constructed. By aligning sequence reads to the pseudo-reference sequence, allelic SNPs as well as PAVs were identified and genotyped with RFAPtools. Two parallel linkage maps, one SNP bin map containing 8,780 SNP loci and one PAV linkage map containing 12,423 dominant loci, were constructed. By aligning marker sequences to B. rapa sequence scaffolds, whose genome is available, we assigned 44 unassembled sequence scaffolds comprising 8.15 Mb onto the B. rapa chromosomes, and also identified 14 instances of misassembly and eight instances of mis-ordering sequence scaffolds. CONCLUSIONS: These results indicate that the modified ddRADseq approach is a cost-effective and simple method to genotype tens of thousands SNPs and PAV markers in a polyploidy plant species. The results also demonstrated that RFAPtools developed in this study are powerful to mine allelic SNPs from homoeologous sequences in polyploids, therefore they are generally applicable in either diploid or polyploid species with or without a reference genome sequence.


Asunto(s)
Brassica napus/genética , Polimorfismo de Nucleótido Simple , Poliploidía , Análisis de Secuencia de ADN/métodos , Mapeo Cromosómico , Productos Agrícolas/genética , ADN de Plantas/genética , Ligamiento Genético , Biblioteca Genómica , Genotipo , Técnicas de Genotipaje , Polimorfismo de Longitud del Fragmento de Restricción
13.
New Phytol ; 195(1): 97-112, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22537016

RESUMEN

• Arsenic (As) contamination of rice (Oryza sativa) is a worldwide concern and elucidating the molecular mechanisms of As accumulation in rice may provide promising solutions to the problem. Previous studies using microarray techniques to investigate transcriptional regulation of plant responses to As stress have identified numerous differentially expressed genes. However, little is known about the metabolic and regulatory network remodelings, or their interactions with microRNA (miRNA) in plants upon As(III) exposure. • We used Illumina sequencing to acquire global transcriptome alterations and miRNA regulation in rice under As(III) treatments of varying lengths of time and dosages. • We found that the response of roots was more distinct when the dosage was varied, whereas that of shoots was more distinct when the treatment time was varied. In particular, the genes involved in heavy metal transportation, jasmonate (JA) biosynthesis and signaling, and lipid metabolism were closely related to responses of rice under As(III) stress. Furthermore, we discovered 36 new As(III)-responsive miRNAs, 14 of which were likely involved in regulating gene expression in transportation, signaling, and metabolism. • Our findings highlight the significance of JA signaling and lipid metabolism in response to As(III) stress and their regulation by miRNA, which provides a foundation for subsequent functional research.


Asunto(s)
Arsénico/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Oryza/genética , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciclopentanos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metales Pesados/farmacocinética , MicroARNs , Oryza/efectos de los fármacos , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
14.
Microbiol Spectr ; 10(3): e0198821, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768947

RESUMEN

The unique geological features of hadal trenches are known to influence both the structure and ecological function of microbial communities. It is also well known that heterotrophs and chemoautotrophs dominate the hadal and abyssal pelagic zones, respectively. Here, a metagenomic investigation was conducted on sediment samples obtained from the abyssal-hadal transition zone in the Mariana Trench to gain a better understanding of the general diversity and potential function of the core microbiome in this zone. A high level of cosmopolitanism existed in the core microbiome referred from a high community similarity among different stations. Niche differentiation along the fine-scale of different sediment layers was observed, especially for major archaeal groups, largely due to sediment depth and the source of organic matter. A prevalence of nitrogen biogeochemical cycles driven by various nitrifying groups with the capability of dark carbon fixation in the abyssal-hadal biosphere was also demonstrated. The predominance of heterotrophic over chemolithoautotrophic pathways in this transition zone was found, and a high abundance of genes related to respiration and carbon fixation (i.e., the intact Calvin and rTCA cycles) were detected as well, which might reflect the intensive microbial activities known to occur in this deep biosphere. The presence of those metabolic processes and associated microbes were reflected by functional and genetic markers generated from the metagenomic data in the current study. However, their roles and contributions to the nitrogen/carbon biogeochemical cycles and flux in the abyssal-hadal transition zone still need further analysis. IMPORTANCE The Mariana Trench is the deepest oceanic region on earth, its microbial ecological exploration has become feasible with the rapid progress of submersible and metagenomic sequencing. We investigated the community compositions and metabolic functions of the core microbiome along the abyssal-hadal transition zone of the Mariana Trench, although most studies by far were focused on the pelagic zone. We found a predominance of heterotrophic groups and related metabolic pathways, which were closely associated with nitrogen biogeochemical cycles driven by various nitrifying groups with the capability of dark carbon fixation.


Asunto(s)
Bacterias , Microbiota , Archaea/genética , Bacterias/genética , Bacterias/metabolismo , Microbiota/genética , Nitrógeno/metabolismo , Océanos y Mares
15.
Nat Biotechnol ; 40(9): 1341-1348, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35760913

RESUMEN

Glaciers represent a unique inventory of microbial genetic diversity and a record of evolution. The Tibetan Plateau contains the largest area of low-latitude glaciers and is particularly vulnerable to global warming. By sequencing 85 metagenomes and 883 cultured isolates from 21 Tibetan glaciers covering snow, ice and cryoconite habitats, we present a specialized glacier microbial genome and gene catalog to archive glacial genomic and functional diversity. This comprehensive Tibetan Glacier Genome and Gene (TG2G) catalog includes 883 genomes and 2,358 metagenome-assembled genomes, which represent 968 candidate species spanning 30 phyla. The catalog also contains over 25 million non-redundant protein-encoding genes, the utility of which is demonstrated by the exploration of secondary metabolite biosynthetic potentials, virulence factor identification and global glacier metagenome comparison. The TG2G catalog is a valuable resource that enables enhanced understanding of the structure and functions of Tibetan glacial microbiomes.


Asunto(s)
Cubierta de Hielo , Microbiota , Cubierta de Hielo/química , Microbiota/genética , Nieve/química
16.
Nat Genet ; 54(10): 1553-1563, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138232

RESUMEN

Complete and accurate reference genomes and annotations provide fundamental resources for functional genomics and crop breeding. Here we report a de novo assembly and annotation of a pea cultivar ZW6 with contig N50 of 8.98 Mb, which features a 243-fold increase in contig length and evident improvements in the continuity and quality of sequence in complex repeat regions compared with the existing one. Genome diversity of 118 cultivated and wild pea demonstrated that Pisum abyssinicum is a separate species different from P. fulvum and P. sativum within Pisum. Quantitative trait locus analyses uncovered two known Mendel's genes related to stem length (Le/le) and seed shape (R/r) as well as some candidate genes for pod form studied by Mendel. A pan-genome of 116 pea accessions was constructed, and pan-genes preferred in P. abyssinicum and P. fulvum showed distinct functional enrichment, indicating the potential value of them as pea breeding resources in the future.


Asunto(s)
Pisum sativum , Fitomejoramiento , Evolución Biológica , Genómica , Pisum sativum/genética , Sitios de Carácter Cuantitativo/genética
17.
Nat Biotechnol ; 39(10): 1292-1299, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33859403

RESUMEN

Although prime editors (PEs) have the potential to facilitate precise genome editing in therapeutic, agricultural and research applications, their specificity has not been comprehensively evaluated. To provide a systematic assessment in plants, we first examined the mismatch tolerance of PEs in plant cells and found that the editing frequency was influenced by the number and location of mismatches in the primer binding site and spacer of the prime editing guide RNA (pegRNA). Assessing the activity of 12 pegRNAs at 179 predicted off-target sites, we detected only low frequencies of off-target edits (0.00~0.23%). Whole-genome sequencing of 29 PE-treated rice plants confirmed that PEs do not induce genome-wide pegRNA-independent off-target single-nucleotide variants or small insertions/deletions. We also show that ectopic expression of the Moloney murine leukemia virus reverse transcriptase as part of the PE does not change retrotransposon copy number or telomere structure or cause insertion of pegRNA or messenger RNA sequences into the genome.


Asunto(s)
Edición Génica/métodos , Genoma de Planta/genética , Sistemas CRISPR-Cas , Virus de la Leucemia Murina de Moloney/genética , Mutación , Oryza/genética , ARN Guía de Kinetoplastida/genética , ADN Polimerasa Dirigida por ARN/genética , Transcripción Reversa/genética , Secuenciación Completa del Genoma
18.
Sci Total Environ ; 711: 134827, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32000325

RESUMEN

Immobilization of U(VI) by naturally ubiquitous ferrous ions (Fe(II)) has been considered as an efficient and ecofriendly method to retard the migration of aqueous U(VI) at many nuclear sites and surface environments. In this study, we conducted Fe-U coprecipitation experiments to investigate the mechanism and stability of uranium (U) precipitation induced by a small quantity of Fe(II) under oxygen-rich conditions. The experimental results suggest that the sedimentation rates of U(VI) by Fe(II) under neutral oxygen-rich conditions are more than 96%, which are about 36% higher than those without Fe(II) and 16% higher than those under oxygen-free conditions. The Fe-U coprecipitates were observed to remain stable under slightly acidic to neutral and oxygen-rich conditions. Fe(II) primarily settles down as low-crystalline iron oxide hydroxide. U(VI) mainly precipitates as three forms: 16-20% of U forms uranyl hydroxide and metaschoepite, which is absorbed on the surface of the solids; 52-56% of U is absorbed as discrete uranyl phases at the internal pores of iron oxide hydroxide; and 27-29% of U is probably incorporated into the FeO(OH) structure as U(V) and U(VI). The U(V) generated via one-electron reduction is somewhat resistant to the oxidation of O2 and the acid dissolution. In addition, nearly 70% of U and only about 15% of Fe could be extracted in 24 h by a hydrochloric acid solution with the H+ concentration ([H+]) of 0.01 M, revealing that U(VI) immobilization by low concentration of Fe(II) combined with O2 has potential applications in the separation and recycling of aqueous uranium.

19.
Genomics Proteomics Bioinformatics ; 18(2): 161-172, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32683045

RESUMEN

Genome reannotation aims for complete and accurate characterization of gene models and thus is of critical significance for in-depth exploration of gene function. Although the availability of massive RNA-seq data provides great opportunities for gene model refinement, few efforts have been made to adopt these precious data in rice genome reannotation. Here we reannotate the rice (Oryza sativa L. ssp. japonica) genome based on integration of large-scale RNA-seq data and release a new annotation system IC4R-2.0. In general, IC4R-2.0 significantly improves the completeness of gene structure, identifies a number of novel genes, and integrates a variety of functional annotations. Furthermore, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are systematically characterized in the rice genome. Performance evaluation shows that compared to previous annotation systems, IC4R-2.0 achieves higher integrity and quality, primarily attributable to massive RNA-seq data applied in genome annotation. Consequently, we incorporate the improved annotations into the Information Commons for Rice (IC4R), a database integrating multiple omics data of rice, and accordingly update IC4R by providing more user-friendly web interfaces and implementing a series of practical online tools. Together, the updated IC4R, which is equipped with the improved annotations, bears great promise for comparative and functional genomic studies in rice and other monocotyledonous species. The IC4R-2.0 annotation system and related resources are freely accessible at http://ic4r.org/.


Asunto(s)
Genoma de Planta , Anotación de Secuencia Molecular , Oryza/genética , RNA-Seq , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estadística como Asunto
20.
Genome Biol ; 21(1): 60, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143734

RESUMEN

BACKGROUND: Mango is one of the world's most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. RESULTS: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. CONCLUSIONS: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces.


Asunto(s)
Evolución Molecular , Genoma de Planta , Mangifera/genética , Aciltransferasas/genética , Domesticación , Frutas/genética , Variación Genética , Mangifera/metabolismo , Fenoles/metabolismo , Pigmentación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA