Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metabolites ; 12(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36144243

RESUMEN

Rheumatoid arthritis (RA) is characterized by systemic inflammation and synovial hyperplasia. Pristimerin, a natural triterpenoid isolated from plants belonging to the Celastraceae and Hippocrateaceae families, has been reported to exhibit anti-inflammation and anti-proliferation activities. Our study aims to reveal the antiarthritic effects of pristimerin and explore its potential mechanism using in vitro, in silico, and in vivo methods. In the present study, pristimerin treatment led to a dose-dependent decrease in cell viability and migration in TNF-α stimulated human rheumatoid arthritis fibroblast-like synoviocytes MH7A. Moreover, UPLC-LTQ-Orbitrap-based cell metabolomics analysis demonstrated that phospholipid biosynthesis, fatty acid biosynthesis, glutathione metabolism and amino acid metabolic pathways were involved in TNF-α induced MH7A cells after pristimerin treatment. In addition, the adjuvant-induced arthritis (AIA) rat model was employed, and the results exhibited that pristimerin could effectively relieve arthritis symptoms and histopathological damage as well as reduce serum levels of TNF-α, NO and synovial expressions of p-Akt and p-Erk in AIA rats. Furthermore, network pharmacology analysis was performed to visualize crucial protein targets of pristimerin for RA treatment, which showed that the effects were mediated through the MAPK/Erk1/2, PI3K/Akt pathways and directing binding with TNF-α. Taken together, our study not only offered new insights into the biochemical mechanism of natural compounds for RA treatment, but also provided a strategy that integrated in vitro, in silico and in vivo studies to facilitate screening of new anti-RA drugs.

2.
J Ethnopharmacol ; 294: 115369, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35562091

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Celastrus orbiculatus Thunb., an important folk medicine, has long been used for the treatment of rheumatoid arthritis and its ethyl acetate extract (COE) has been reported to possess anticancer, antiinflammation and antiarthritic effects. However, the therapeutic effect and mechanism of COE treatment in rheumatoid arthritis has been rarely studied especially from the perspective of metabolomics. AIM OF STUDY: To reveal the therapeutic effects of COE on adjuvant-induced arthritis (AIA) rats through histopathological analysis, non-targeted metabolomics, and molecular docking study. MATERIALS AND METHODS: Forty-three Wistar rats were randomly divided into normal group, AIA model group, methotrexate group, and COE groups (80 mg/kg, 160 mg/kg and 320 mg/kg of ethyl acetate extract). Paw swelling and arthritis score were monitored through the experiment. Serum levels of tumor necrosis factor α (TNF-α) and nitric oxide were determined and histopathological evaluation was performed. Furthermore, Ultra-high performance liquid chromatography-linear trap quadrupole-Orbitrap-based metabolomics was employed to characterize metabolic changes of AIA rats after COE treatment and molecular docking was performed to predict the potential phytochemicals of COE against TNF-α. RESULTS: COE at three dosages could significantly relieve paw swelling and reduce arthritis scores of AIA rat. Histopathological analysis revealed remarkable decrease in synovial inflammation and bone erosion after COE treatment, especially at middle and high dosage. Additionally, COE down-regulated serum levels of TNF-α and nitric oxide. Serum metabolomics showed that 22 potential biomarkers for the COE treatment of AIA rats were identified, which were closely related to fatty acid metabolism, glycerophospholipid catabolism, and tryptophan metabolism. The molecular docking models predicted that olean-type triterpenes in COE may contribute most to therapeutic effects of rheumatoid arthritis through targeting TNF-α. CONCLUSIONS: COE could significantly relieve the arthritic symptoms in AIA rats and the ultra-high performance liquid chromatography-mass spectrometry based metabolomics proved to be an efficient method to characterize subtle metabolic changes of AIA rats after COE treatment.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Celastrus , Acetatos , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Celastrus/química , Metabolómica , Simulación del Acoplamiento Molecular , Óxido Nítrico , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA