Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(27): e2305779, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764279

RESUMEN

Photocatalytic water splitting for clean hydrogen production has been a very attractive research field for decades. However, the insightful understanding of the actual active sites and their impact on catalytic performance is still ambiguous. Herein, a Pr-doped TiO2-supported Cu single atom (SA) photocatalyst is successfully synthesized (noted as Cu/Pr-TiO2). It is found that Pr dopants passivate the formation of oxygen vacancies, promoting the density of photogenerated electrons on the CuSAs, and optimizing the electronic structure and H* adsorption behavior on the CuSA active sites. The photocatalytic hydrogen evolution rate of the obtained Cu/Pr-TiO2 catalyst reaches 32.88 mmol g-1 h-1, 2.3 times higher than the Cu/TiO2. Innovatively, the excellent catalytic activity and performance is attributed to the active sites change from O atoms to CuSAs after Pr doping is found. This work provides new insight for understanding the accurate roles of single atoms in photocatalytic water splitting.

2.
Nanoscale Horiz ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973510

RESUMEN

The development of high-activity photocatalysts is crucial for the current large-scale development of photocatalytic hydrogen applications. Herein, we have developed a strategy to significantly enhance the hydrogen photocatalytic activity of Cu/Pr di-atom co-modified TiO2 architectures by selectively anchoring Cu single atoms on the oxygen vacancies of the TiO2 surface and replacing a trace of Ti atoms in the bulk with rare earth Pr atoms. Calculation results demonstrated that the synergistic effect between Cu single atoms and Pr atoms regulates the electronic structure of Cu/Pr-TiO2, thus promoting the separation of photogenerated carriers and their directional migration to Cu single atoms for the photocatalytic reaction. Furthermore, the d-band center of Cu/Pr-TiO2, which is located at -4.70 eV, optimizes the adsorption and desorption behavior of H*. Compared to TiO2, Pr-TiO2, and Cu/TiO2, Cu/Pr-TiO2 displays the best H* adsorption Gibbs free energy (-0.047 eV). Furthermore, experimental results confirmed that the photogenerated carrier lifetime of Cu/Pr-TiO2 is not only the longest (2.45 ns), but its hydrogen production rate (34.90 mmol g-1 h-1) also significantly surpasses those of Cu/TiO2 (13.39 mmol g-1 h-1) and Pr-TiO2 (0.89 mmol g-1 h-1). These findings open up a novel atomic perspective for the development of optimal hydrogen activity in dual-atom-modified TiO2 photocatalysts.

3.
J Colloid Interface Sci ; 652(Pt B): 1908-1916, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690298

RESUMEN

TiO2 photocatalysts are of great interest in the fields of environmental purification, new energy and so on, because of their non-toxicity, high stability, high redox ability and low cost. However, the photogenerated carriers are severely recombined, which limits the application of TiO2 photocatalysts. Herein, S-scheme Cu3P/TiO2 heterojunction composites were successfully synthesized by a simple and efficient microwave hydrothermal method, and the results show that the hydrogen production rate of Cu3P/TiO2 is 5.83 mmol∙g-1∙h-1 under simulated sunlight irradiation, which is 7.3 and 83.3 times higher than that of pure TiO2 and Cu3P, respectively. This excellent performance is derived from the internal electric field (IEF) and energy band bending generated by the S-scheme heterojunction formed between Cu3P and TiO2. The density functional theory (DFT) calculation indicates that the Cu3P possess smaller work function and more negative conduction band (CB) position than that of TiO2, which is very conducive to greatly improve the H+ reduction ability and hydrogen production performance. This work provides a new idea for the reveal of electron transfer paths and active sites in S-scheme heterojunctions and deepens the mechanism understanding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA