Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Development ; 148(3)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462113

RESUMEN

Macrophages are components of the innate immune system with key roles in tissue inflammation and repair. It is now evident that macrophages also support organogenesis, but few studies have characterized their identity, ontogeny and function during heart development. Here, we show that the distribution and prevalence of resident macrophages in the subepicardial compartment of the developing heart coincides with the emergence of new lymphatics, and that macrophages interact closely with the nascent lymphatic capillaries. Consequently, global macrophage deficiency led to extensive vessel disruption, with mutant hearts exhibiting shortened and mis-patterned lymphatics. The origin of cardiac macrophages was linked to the yolk sac and foetal liver. Moreover, the Cx3cr1+ myeloid lineage was found to play essential functions in the remodelling of the lymphatic endothelium. Mechanistically, macrophage hyaluronan was required for lymphatic sprouting by mediating direct macrophage-lymphatic endothelial cell interactions. Together, these findings reveal insight into the role of macrophages as indispensable mediators of lymphatic growth during the development of the mammalian cardiac vasculature.


Asunto(s)
Corazón/crecimiento & desarrollo , Vasos Linfáticos , Macrófagos/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/genética , Adhesión Celular , Línea Celular , Células Endoteliales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Inflamación , Linfangiogénesis , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Organogénesis/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Saco Vitelino
2.
PLoS Genet ; 13(10): e1007068, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29084269

RESUMEN

The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Desarrollo Embrionario/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Pericardio/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Vasos Coronarios/metabolismo , Embrión de Mamíferos , Transición Epitelial-Mesenquimal/genética , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Ratones , Ratones Noqueados , Mutación , Miocardio/metabolismo , Pericardio/metabolismo
3.
STAR Protoc ; 2(1): 100359, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33718887

RESUMEN

Genetic markers used to define discrete cell populations are seldom expressed exclusively in the population of interest and are, thus, unsuitable when evaluated individually, especially in the absence of spatial and morphological information. Here, we present fluorescence in situ hybridization for flow cytometry to allow simultaneous analysis of multiple marker genes at the single whole-cell level, exemplified by application to the embryonic epicardium. The protocol facilitates multiplexed quantification of gene and protein expression and temporal changes across specific cell populations. For complete details on the use and execution of this protocol, please refer to Lupu et al. (2020).


Asunto(s)
Embrión de Mamíferos/metabolismo , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Pericardio/metabolismo , Animales , Embrión de Mamíferos/citología , Ratones , Pericardio/citología
4.
Stem Cell Reports ; 14(5): 770-787, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32359445

RESUMEN

The embryonic epicardium, originating from the proepicardial organ (PEO), provides a source of multipotent progenitors for cardiac lineages, including pericytes, fibroblasts, and vascular smooth muscle cells. Maximizing the regenerative capacity of the adult epicardium depends on recapitulating embryonic cell fates. The potential of the epicardium to contribute coronary endothelium is unclear, due to conflicting Cre-based lineage trace data. Controversy also surrounds when epicardial cell fate becomes restricted. Here, we systematically investigate expression of five widely used epicardial markers, Wt1, Tcf21, Tbx18, Sema3d, and Scx, over the course of development. We show overlap of markers in all PEO and epicardial cells until E13.5, and find no evidence for discrete proepicardial sub-compartments that might contribute coronary endothelium via the epicardial layer. Our findings clarify a number of prevailing discrepancies and support the notion that epicardium-derived cell fate, to form fibroblasts or mural cells, is specified after epithelial-mesenchymal transition, not pre-determined within the PEO.


Asunto(s)
Linaje de la Célula , Células Madre Embrionarias de Ratones/metabolismo , Pericardio/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Musculares/citología , Células Musculares/metabolismo , Pericardio/embriología , Pericardio/metabolismo , Pericitos/citología , Pericitos/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
5.
Nat Rev Cardiol ; 17(12): 790-806, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32587347

RESUMEN

The formation of new blood vessels after myocardial infarction (MI) is essential for the survival of existing and regenerated cardiac tissue. However, the extent of endogenous revascularization after MI is insufficient, and MI can often result in ventricular remodelling, progression to heart failure and premature death. The neutral results of numerous clinical trials that have evaluated the efficacy of angiogenic therapy to revascularize the infarcted heart reflect our poor understanding of the processes required to form a functional coronary vasculature. In this Review, we describe the latest advances in our understanding of the processes involved in coronary vessel formation, with mechanistic insights taken from developmental studies. Coronary vessels originate from multiple cellular sources during development and form through a number of distinct and carefully orchestrated processes. The ectopic reactivation of developmental programmes has been proposed as a new paradigm for regenerative medicine, therefore, a complete understanding of these processes is crucial. Furthermore, knowledge of how these processes differ between the embryonic and adult heart, and how they might be more closely recapitulated after injury are critical for our understanding of regenerative biology, and might facilitate the identification of tractable molecular targets to therapeutically promote neovascularization and regeneration of the infarcted heart.


Asunto(s)
Vasos Coronarios , Infarto del Miocardio , Regeneración , Vasos Coronarios/fisiología , Humanos , Infarto del Miocardio/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA