Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380047

RESUMEN

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Mutación/genética , Motivos de Nucleótidos/genética , Transición de Fase , Mutación Puntual/genética , Poli A/metabolismo , Unión Proteica , Multimerización de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia
2.
Cell ; 175(4): 1105-1118.e17, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343898

RESUMEN

Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This "primary regionalization" allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS.


Asunto(s)
Ensamble y Desensamble de Cromatina , Inducción Embrionaria , Neurogénesis , Animales , Línea Celular , Células Cultivadas , Embrión de Pollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
3.
Cell ; 174(5): 1067-1081.e17, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078707

RESUMEN

Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/química , Elementos de Nucleótido Esparcido Largo , Proteínas Asociadas a Matriz Nuclear/química , Poliadenilación , Proteína de Unión al Tracto de Polipirimidina/química , Proteínas de Unión al ARN/química , ARN/química , Empalme Alternativo , Animales , Sitios de Unión , Exones , Células HeLa , Humanos , Intrones , Ratones , Mutación , Motivos de Nucleótidos , Filogenia , Unión Proteica , Mapeo de Interacción de Proteínas , Empalme del ARN
4.
Nat Immunol ; 20(3): 374, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30733606

RESUMEN

In the version of this article initially published, the Supplementary Data file was an incorrect version. The correct version is now provided. The error has been corrected in the HTML and PDF version of the article.

5.
Nat Immunol ; 19(5): 497-507, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662170

RESUMEN

The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4+ T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4+ T cells in disease models involving the TH1 subset of helper T cells (malaria), TH2 cells (allergy) and TH17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in TH1 and TH2 responses, TH17 cell-mediated pathology was reduced in this context, with an accompanying decrease in TH17 cells and increase in Foxp3+ regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Regulación de la Expresión Génica/inmunología , Redes Reguladoras de Genes/inmunología , Interleucina-2/biosíntesis , Proteínas Proto-Oncogénicas c-maf/inmunología , Animales , Interleucina-2/inmunología , Ratones
6.
Nature ; 615(7950): 105-110, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36697830

RESUMEN

Indirect development with an intermediate larva exists in all major animal lineages1, which makes larvae central to most scenarios of animal evolution2-11. Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We performed chromosome-scale genome sequencing in the annelid Owenia fusiformis with transcriptomic and epigenomic profiling during the life cycles of this and two other annelids. We found that trunk development is deferred to pre-metamorphic stages in the feeding larva of O. fusiformis but starts after gastrulation in the non-feeding larva with gradual metamorphosis of Capitella teleta and the direct developing embryo of Dimorphilus gyrociliatus. Accordingly, the embryos of O. fusiformis develop first into an enlarged anterior domain that forms larval tissues and the adult head12. Notably, this also occurs in the so-called 'head larvae' of other bilaterians13-17, with which the O. fusiformis larva shows extensive transcriptomic similarities. Together, our findings suggest that the temporal decoupling of head and trunk formation, as maximally observed in head larvae, facilitated larval evolution in Bilateria. This diverges from prevailing scenarios that propose either co-option9,10 or innovation11 of gene regulatory programmes to explain larva and adult origins.


Asunto(s)
Genómica , Estadios del Ciclo de Vida , Poliquetos , Animales , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Poliquetos/anatomía & histología , Poliquetos/embriología , Poliquetos/genética , Poliquetos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Epigenómica , Cabeza/anatomía & histología , Cabeza/embriología , Cabeza/crecimiento & desarrollo
7.
Cell ; 152(3): 453-66, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374342

RESUMEN

There are ~650,000 Alu elements in transcribed regions of the human genome. These elements contain cryptic splice sites, so they are in constant danger of aberrant incorporation into mature transcripts. Despite posing a major threat to transcriptome integrity, little is known about the molecular mechanisms preventing their inclusion. Here, we present a mechanism for protecting the human transcriptome from the aberrant exonization of transposable elements. Quantitative iCLIP data show that the RNA-binding protein hnRNP C competes with the splicing factor U2AF65 at many genuine and cryptic splice sites. Loss of hnRNP C leads to formation of previously suppressed Alu exons, which severely disrupt transcript function. Minigene experiments explain disease-associated mutations in Alu elements that hamper hnRNP C binding. Thus, by preventing U2AF65 binding to Alu elements, hnRNP C plays a critical role as a genome-wide sentinel protecting the transcriptome. The findings have important implications for human evolution and disease.


Asunto(s)
Elementos Alu , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Evolución Molecular , Exones , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Sitios de Empalme de ARN , Análisis de Secuencia de ARN , Factor de Empalme U2AF
8.
Cell ; 152(1-2): 327-39, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332764

RESUMEN

Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.


Asunto(s)
Inmunoprecipitación de Cromatina , Modelos Biológicos , Técnica SELEX de Producción de Aptámeros , Factores de Transcripción/metabolismo , Animales , ADN/química , Humanos , Cadenas de Markov , Ratones , Filogenia , Factores de Transcripción/genética
9.
Genome Res ; 34(3): 426-440, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38621828

RESUMEN

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.


Asunto(s)
Genoma , Urocordados , Animales , Urocordados/genética , Urocordados/clasificación , Evolución Molecular , Femenino , Filogenia , Masculino , Sintenía
10.
Mol Cell ; 73(4): 699-713.e6, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30554945

RESUMEN

The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Eliminación de Gen , Edición Génica/métodos , Mutagénesis Insercional , Proteína 9 Asociada a CRISPR/metabolismo , Proliferación Celular , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Células HEK293 , Células Hep G2 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Motivos de Nucleótidos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
11.
Nature ; 587(7832): 126-132, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32879494

RESUMEN

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Asunto(s)
Inestabilidad Cromosómica/genética , Evolución Molecular , Cariotipo , Metástasis de la Neoplasia/genética , Neoplasias/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 8/genética , Células Clonales/metabolismo , Células Clonales/patología , Ciclina E/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Mutagénesis , Metástasis de la Neoplasia/patología , Neoplasias/patología , Proteínas Oncogénicas/genética
12.
Genome Res ; 32(1): 71-84, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34963663

RESUMEN

Astrocytes contribute to motor neuron death in amyotrophic lateral sclerosis (ALS), but whether they adopt deleterious features consistent with inflammatory reactive states remains incompletely resolved. To identify inflammatory reactive features in ALS human induced pluripotent stem cell (hiPSC)-derived astrocytes, we examined transcriptomics, proteomics, and glutamate uptake in VCP-mutant astrocytes. We complemented this by examining other ALS mutations and models using a systematic meta-analysis of all publicly-available ALS astrocyte sequencing data, which included hiPSC-derived astrocytes carrying SOD1, C9orf72, and FUS gene mutations as well as mouse ALS astrocyte models with SOD1G93A mutation, Tardbp deletion, and Tmem259 (also known as membralin) deletion. ALS astrocytes were characterized by up-regulation of genes involved in the extracellular matrix, endoplasmic reticulum stress, and the immune response and down-regulation of synaptic integrity, glutamate uptake, and other neuronal support processes. We identify activation of the TGFB, Wnt, and hypoxia signaling pathways in both hiPSC and mouse ALS astrocytes. ALS changes positively correlate with TNF, IL1A, and complement pathway component C1q-treated inflammatory reactive astrocytes, with significant overlap of differentially expressed genes. By contrasting ALS changes with models of protective reactive astrocytes, including middle cerebral artery occlusion and spinal cord injury, we uncover a cluster of genes changing in opposing directions, which may represent down-regulated homeostatic genes and up-regulated deleterious genes in ALS astrocytes. These observations indicate that ALS astrocytes augment inflammatory processes while concomitantly suppressing neuronal supporting mechanisms, thus resembling inflammatory reactive states and offering potential therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Mutación
13.
RNA ; 29(6): 715-723, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894192

RESUMEN

CLIP technologies are now widely used to study RNA-protein interactions and many data sets are now publicly available. An important first step in CLIP data exploration is the visual inspection and assessment of processed genomic data on selected genes or regions and performing comparisons: either across conditions within a particular project, or incorporating publicly available data. However, the output files produced by data processing pipelines or preprocessed files available to download from data repositories are often not suitable for direct comparison and usually need further processing. Furthermore, to derive biological insight it is usually necessary to visualize a CLIP signal alongside other data such as annotations, or orthogonal functional genomic data (e.g., RNA-seq). We have developed a simple, but powerful, command-line tool: clipplotr, which facilitates these visual comparative and integrative analyses with normalization and smoothing options for CLIP data and the ability to show these alongside reference annotation tracks and functional genomic data. These data can be supplied as input to clipplotr in a range of file formats, which will output a publication quality figure. It is written in R and can both run on a laptop computer independently or be integrated into computational workflows on a high-performance cluster. Releases, source code, and documentation are freely available at https://github.com/ulelab/clipplotr.


Asunto(s)
Genómica , Programas Informáticos , Genoma , RNA-Seq
14.
Nucleic Acids Res ; 51(8): 3573-3589, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37013995

RESUMEN

The structure of mRNA molecules plays an important role in its interactions with trans-acting factors, notably RNA binding proteins (RBPs), thus contributing to the functional consequences of this interplay. However, current transcriptome-wide experimental methods to chart these interactions are limited by their poor sensitivity. Here we extend the hiCLIP atlas of duplexes bound by Staufen1 (STAU1) ∼10-fold, through careful consideration of experimental assumptions, and the development of bespoke computational methods which we apply to existing data. We present Tosca, a Nextflow computational pipeline for the processing, analysis and visualisation of proximity ligation sequencing data generally. We use our extended duplex atlas to discover insights into the RNA selectivity of STAU1, revealing the importance of structural symmetry and duplex-span-dependent nucleotide composition. Furthermore, we identify heterogeneity in the relationship between transcripts with STAU1-bound 3' UTR duplexes and metabolism of the associated RNAs that we relate to RNA structure: transcripts with short-range proximal 3' UTR duplexes have high degradation rates, but those with long-range duplexes have low rates. Overall, our work enables the integrative analysis of proximity ligation data delivering insights into specific features and effects of RBP-RNA structure interactions.


Asunto(s)
Proteínas de Unión al ARN , Transactivadores , Regiones no Traducidas 3'/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Unión Proteica
15.
Brain ; 146(6): 2547-2556, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789492

RESUMEN

Valosin-containing protein (VCP) is a hexameric ATPase associated with diverse cellular activities. Genetic mutations in VCP are associated with several forms of muscular and neuronal degeneration, including amyotrophic lateral sclerosis (ALS). Moreover, VCP mediates UV-induced proteolysis of RNA polymerase II (RNAPII), but little is known about the effects of VCP mutations on the transcriptional machinery. Here, we used silica particle-assisted chromatin enrichment and mass spectrometry to study proteins co-localized with RNAPII in precursor neurons differentiated from VCP-mutant or control induced pluripotent stem cells. Remarkably, we observed diminished RNAPII binding of proteins involved in transcription elongation and mRNA splicing in mutant cells. One of these is SART3, a recycling factor of the splicing machinery, whose knockdown leads to perturbed intron retention in several ALS-associated genes. Additional reduced proteins are RBM45, EIF5A and RNF220, mutations in which are associated with various neurodegenerative disorders and are linked to TDP-43 aggregation. Conversely, we observed increased RNAPII binding of heat shock proteins such as HSPB1. Together, these findings shed light on how transcription and splicing machinery are impaired by VCP mutations, which might contribute to aberrant alternative splicing and proteinopathy in neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , ARN Polimerasa II/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Mutación/genética , Antígenos de Neoplasias , Proteínas de Unión al ARN/genética , Proteínas del Tejido Nervioso/genética
16.
Cell ; 133(5): 813-28, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18510926

RESUMEN

Dosage compensation, mediated by the MSL complex, regulates X-chromosomal gene expression in Drosophila. Here we report that the histone H4 lysine 16 (H4K16) specific histone acetyltransferase MOF displays differential binding behavior depending on whether the target gene is located on the X chromosome versus the autosomes. More specifically, on the male X chromosome, where MSL1 and MSL3 are preferentially associated with the 3' end of dosage compensated genes, MOF displays a bimodal distribution binding to promoters and the 3' ends of genes. In contrast, on MSL1/MSL3 independent X-linked genes and autosomal genes in males and females, MOF binds primarily to promoters. Binding of MOF to autosomes is functional, as H4K16 acetylation and the transcription levels of a number of genes are affected upon MOF depletion. Therefore, MOF is not only involved in the onset of dosage compensation, but also acts as a regulator of gene expression in the Drosophila genome.


Asunto(s)
Compensación de Dosificación (Genética) , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Región de Flanqueo 3' , Acetilación , Animales , Línea Celular , Femenino , Genoma de los Insectos , Histonas/genética , Histonas/metabolismo , Masculino , Regiones Promotoras Genéticas , Cromosoma X
17.
Nucleic Acids Res ; 49(22): 13092-13107, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871434

RESUMEN

RNA-binding proteins (RBPs) play diverse roles in regulating co-transcriptional RNA-processing and chromatin functions, but our knowledge of the repertoire of chromatin-associated RBPs (caRBPs) and their interactions with chromatin remains limited. Here, we developed SPACE (Silica Particle Assisted Chromatin Enrichment) to isolate global and regional chromatin components with high specificity and sensitivity, and SPACEmap to identify the chromatin-contact regions in proteins. Applied to mouse embryonic stem cells, SPACE identified 1459 chromatin-associated proteins, ∼48% of which are annotated as RBPs, indicating their dual roles in chromatin and RNA-binding. Additionally, SPACEmap stringently verified chromatin-binding of 403 RBPs and identified their chromatin-contact regions. Notably, SPACEmap showed that about 40% of the caRBPs bind chromatin by intrinsically disordered regions (IDRs). Studying SPACE and total proteome dynamics from mES cells grown in 2iL and serum medium indicates significant correlation (R = 0.62). One of the most dynamic caRBPs is Dazl, which we find co-localized with PRC2 at transcription start sites of genes that are distinct from Dazl mRNA binding. Dazl and other PRC2-colocalised caRBPs are rich in intrinsically disordered regions (IDRs), which could contribute to the formation and regulation of phase-separated PRC condensates. Together, our approach provides an unprecedented insight into IDR-mediated interactions and caRBPs with moonlighting functions in native chromatin.


Asunto(s)
Cromatina/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Sitios de Unión/genética , Células Cultivadas , Cromatina/genética , Proteínas Intrínsecamente Desordenadas/genética , Espectrometría de Masas/métodos , Ratones , Unión Proteica , Mapas de Interacción de Proteínas/genética , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/genética , Reproducibilidad de los Resultados
18.
Nucleic Acids Res ; 49(6): 3168-3184, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33684213

RESUMEN

Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes.


Asunto(s)
Empalme Alternativo , Esclerosis Amiotrófica Lateral/genética , Astrocitos/metabolismo , Intrones , Animales , Astrocitos/efectos de los fármacos , Canales de Calcio/genética , Núcleo Celular/genética , Células Cultivadas , Citocinas/farmacología , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Expresión Génica , Humanos , Ratones , Mutación , Superóxido Dismutasa-1/genética , Translocación Genética , Proteína que Contiene Valosina/genética
19.
Genes Dev ; 29(5): 501-12, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25737280

RESUMEN

Cellular morphology is an essential determinant of cellular function in all kingdoms of life, yet little is known about how cell shape is controlled. Here we describe a molecular program that controls the early morphology of neurons through a metazoan-specific zinc finger protein, Unkempt. Depletion of Unkempt in mouse embryos disrupts the shape of migrating neurons, while ectopic expression confers neuronal-like morphology to cells of different nonneuronal lineages. We found that Unkempt is a sequence-specific RNA-binding protein and identified its precise binding sites within coding regions of mRNAs linked to protein metabolism and trafficking. RNA binding is required for Unkempt-induced remodeling of cellular shape and is directly coupled to a reduced production of the encoded proteins. These findings link post-transcriptional regulation of gene expression with cellular shape and have general implications for the development and disease of multicellular organisms.


Asunto(s)
Forma de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Animales , Encéfalo/metabolismo , Línea Celular , Embrión de Mamíferos , Perfilación de la Expresión Génica , Células HeLa , Humanos , Ratones , Unión Proteica , ARN Mensajero
20.
Genome Res ; 29(6): 988-998, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31097474

RESUMEN

Chromatin transactions are typically studied in vivo, or in vitro using artificial chromatin lacking the epigenetic complexity of the natural material. Attempting to bridge the gap between these approaches, we established a system for isolating the yeast genome as a library of mononucleosomes harboring the natural epigenetic signature, suitable for biochemical manipulation. Combined with deep sequencing, this library was used to investigate the stability of individual nucleosomes and, as proof of principle, the nucleosome preference of the chromatin remodeling complex, RSC. This approach uncovered a distinct preference of RSC for nucleosomes derived from regions with a high density of histone variant H2AZ, and this preference is indeed markedly diminished using nucleosomes from cells lacking H2AZ. The preference for H2AZ remodeling/nucleosome ejection can also be reconstituted with recombinant nucleosome arrays. Together, our data indicate that, despite being separated from their genomic context, individual nucleosomes can retain their original identity as promoter- or transcription start site (TSS)-nucleosomes. Besides shedding new light on substrate preference of the chromatin remodeler RSC, the simple experimental system outlined here should be generally applicable to the study of chromatin transactions.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromatina/metabolismo , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Nucleosomas/metabolismo , Transcripción Genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Unión Proteica , Levaduras/genética , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA