Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 47(8): 2252-64, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18201103

RESUMEN

DREAM (calsenilin/KChIP3) is an EF-hand calcium-binding protein that binds to specific DNA sequences and regulates Ca2+-induced transcription of prodynorphin and c-fos genes. Here, we present the atomic-resolution structure of Ca2+-bound DREAM in solution determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments and 15N NMR relaxation analysis indicate that Ca2+-bound DREAM forms a stable dimer in solution. The structure of the first 77 residues from the N-terminus could not be determined by our NMR analysis. The C-terminal DREAM structure (residues 78-256) contains four EF-hand motifs arranged in a tandem linear array, similar to that seen in KChIP1, recoverin, and other structures of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily. Mg2+ is bound at the second EF-hand, whereas Ca2+ is bound functionally at the third and fourth sites. The first and second EF-hands form an exposed hydrophobic groove on the protein surface lined by side-chain atoms of L96, F100, F114, I117, Y118, F121, F122, Y151, L155, L158, and L159 that are highly conserved in all NCS proteins. An exposed leucine near the C-terminus (L251) is suggested to form intermolecular contacts with leucine residues in the hydrophobic groove (L155, L158, and L159). Positively charged side chains of Arg and Lys (Lys87, Lys90, Lys91, Arg98, Lys101, Arg160, and Lys166) are clustered on one side of the protein surface and may mediate electrostatic contacts with DNA targets. We propose that Ca2+-induced dimerization of DREAM may partially block the putative DNA-binding site, which may suggest as to how Ca2+ abolishes DREAM binding to DNA to activate the transcription of prodynorphin and other downstream genes in pain control.


Asunto(s)
Calcio/farmacología , Proteínas de Interacción con los Canales Kv/química , Proteínas de Interacción con los Canales Kv/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/metabolismo , Dimerización , Proteínas de Interacción con los Canales Kv/genética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido
2.
J Biol Chem ; 282(42): 30949-59, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17720810

RESUMEN

Yeast frequenin (Frq1), a small N-myristoylated EF-hand protein, activates phosphatidylinositol 4-kinase Pik1. The NMR structure of Ca2+-bound Frq1 complexed to an N-terminal Pik1 fragment (residues 121-174) was determined. The Frq1 main chain is similar to that in free Frq1 and related proteins in the same branch of the calmodulin superfamily. The myristoyl group and first eight residues of Frq1 are solvent-exposed, and Ca2+ binds the second, third, and fourth EF-hands, which associate to create a groove with two pockets. The Pik1 peptide forms two helices (125-135 and 156-169) connected by a 20-residue loop. Side chains in the Pik1 N-terminal helix (Val-127, Ala-128, Val-131, Leu-132, and Leu-135) interact with solvent-exposed residues in the Frq1 C-terminal pocket (Leu-101, Trp-103, Val-125, Leu-138, Ile-152, and Leu-155); side chains in the Pik1 C-terminal helix (Ala-157, Ala-159, Leu-160, Val-161, Met-165, and Met-167) contact solvent-exposed residues in the Frq1 N-terminal pocket (Trp-30, Phe-34, Phe-48, Ile-51, Tyr-52, Phe-55, Phe-85, and Leu-89). This defined complex confirms that residues in Pik1 pinpointed as necessary for Frq1 binding by site-directed mutagenesis are indeed sufficient for binding. Removal of the Pik1 N-terminal region (residues 8-760) from its catalytic domain (residues 792-1066) abolishes lipid kinase activity, inconsistent with Frq1 binding simply relieving an autoinhibitory constraint. Deletion of the lipid kinase unique motif (residues 35-110) also eliminates Pik1 activity. In the complex, binding of Ca2+-bound Frq1 forces the Pik1 chain into a U-turn. Frq1 may activate Pik1 by facilitating membrane targeting via the exposed N-myristoyl group and by imposing a structural transition that promotes association of the lipid kinase unique motif with the kinase domain.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/química , Proteínas de Unión al Calcio/química , Calcio/química , Complejos Multiproteicos/química , Péptidos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Secuencias de Aminoácidos , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calmodulina , Membrana Celular , Activación Enzimática/fisiología , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Péptidos/genética , Péptidos/metabolismo , Unión Proteica/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
3.
J Biol Chem ; 281(48): 37237-45, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17020884

RESUMEN

Recoverin, a member of the neuronal calcium sensor branch of the EF-hand superfamily, serves as a calcium sensor that regulates rhodopsin kinase (RK) activity in retinal rod cells. We report here the NMR structure of Ca(2+)-bound recoverin bound to a functional N-terminal fragment of rhodopsin kinase (residues 1-25, called RK25). The overall main-chain structure of recoverin in the complex is similar to structures of Ca(2+)-bound recoverin in the absence of target (<1.8A root-mean-square deviation). The first eight residues of recoverin at the N terminus are solvent-exposed, enabling the N-terminal myristoyl group to interact with target membranes, and Ca(2+) is bound at the second and third EF-hands of the protein. RK25 in the complex forms an amphipathic helix (residues 4-16). The hydrophobic face of the RK25 helix (Val-9, Val-10, Ala-11, Ala-14, and Phe-15) interacts with an exposed hydrophobic groove on the surface of recoverin lined by side-chain atoms of Trp-31, Phe-35, Phe-49, Ile-52, Tyr-53, Phe-56, Phe-57, Tyr-86, and Leu-90. Residues of recoverin that contact RK25 are highly conserved, suggesting a similar target binding site structure in all neuronal calcium sensor proteins. Site-specific mutagenesis and deletion analysis confirm that the hydrophobic residues at the interface are necessary and sufficient for binding. The recoverin-RK25 complex exhibits Ca(2+)-induced binding to rhodopsin immobilized on concanavalin-A resin. We propose that Ca(2+)-bound recoverin is bound between rhodopsin and RK in a ternary complex on rod outer segment disk membranes, thereby blocking RK interaction with rhodopsin at high Ca(2+).


Asunto(s)
Calcio/química , Quinasa 1 del Receptor Acoplado a Proteína-G/fisiología , Recoverina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Quinasa 1 del Receptor Acoplado a Proteína-G/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Unión Proteica , Rodopsina/química
4.
Biochemistry ; 45(6): 1702-11, 2006 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-16460017

RESUMEN

Pyruvate phosphate dikinase (PPDK) is a multidomain protein that catalyzes the interconversion of ATP, pyruvate, and phosphate with AMP, phosphoenolpyruvate (PEP), and pyrophosphate using its central domain to transport phosphoryl groups between two distant active sites. In this study, the mechanism by which the central domain moves between the two catalytic sites located on the N-terminal and C-terminal domains was probed by expressing this domain as an independent protein and measuring its structure, stability, and ability to catalyze the ATP/phosphate partial reaction in conjunction with the engineered N-terminal domain protein (residues 1-340 of the native PPDK). The encoding gene was engineered to express the central domain as residues 381-512 of the native PPDK. The central domain was purified and shown to be soluble, monomeric (13,438 Da), and stable (deltaG = 4.3 kcal/mol for unfolding in buffer at pH 7.0, 25 degrees C) and to possess native structure, as determined by multidimensional heteronuclear NMR analysis. The main chain structure of the central domain in solution aligns closely with that of the X-ray structure of native PPDK (the root-mean-square deviation is 2.2 A). Single turnover reactions of [14C]ATP and phosphate, carried out in the presence of equal concentrations of central domain and the N-terminal domain protein, did not produce the expected products, in contrast to efficient product formation observed for the N-terminal central domain construct (residues 1-553 of the native PPDK). These results are interpreted as evidence that the central domain, although solvent-compatible, must be tethered by the flexible linkers to the N-terminal domain for the productive domain-domain docking required for efficient catalysis.


Asunto(s)
Fosfatos/metabolismo , Piruvato Ortofosfato Diquinasa/química , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Difosfatos/metabolismo , Estabilidad de Enzimas , Expresión Génica , Código Genético , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Ingeniería de Proteínas , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Ácido Pirúvico/metabolismo , Urea/farmacología
5.
Biochemistry ; 44(17): 6416-23, 2005 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-15850375

RESUMEN

2B4, a transmembrane receptor expressed primarily on natural killer (NK) cells and on a subset of CD8(+) T cells, plays an important role in activating NK-mediated cytotoxicity through its interaction with CD48 on target cells. We report here the atomic-resolution structure of the ligand-binding (D1) domain of 2B4 in solution determined by nuclear magnetic resonance (NMR) spectroscopy. The overall main chain structure resembles an immunoglobulin variable (V) domain fold, very similar to that seen previously for domain 1 of CD2 and CD4. The structure contains nine beta-strands assembled into two beta-sheets conventionally labeled DEB and AGFCC'C' '. The six-stranded sheet (AGFCC'C' ') contains structural features that may have implications for ligand recognition and receptor function. A noncanonical disulfide bridge between Cys2 and Cys99 stabilizes a long and parallel beta-structure between strand A (residues 3-12) and strand G (residues 100-108). A beta-bulge at residues Glu45 and Ile46 places a bend in the middle of strand C' that orients two conserved and adjacent hydrophobic residues (Ile46 and Leu47) inside the beta-sandwich as seen in other V domains. Finally, the FG-loop (implicated in ligand recognition in the CD2-CD58 complex) is dynamically disordered in 2B4 in the absence of a ligand. We propose that ligand binding to 2B4 might stabilize the structure of the FG-loop in the ligand complex.


Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Resonancia Magnética Nuclear Biomolecular , Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Secuencia de Aminoácidos , Antígeno CD48 , Cristalografía por Rayos X , Región Variable de Inmunoglobulina/química , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Pliegue de Proteína , Estructura Terciaria de Proteína , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Homología Estructural de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA