Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(44): 12414-12419, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791139

RESUMEN

Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes.


Asunto(s)
Glycine max/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Grano Comestible/anatomía & histología , Grano Comestible/genética , Grano Comestible/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Mutación , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Semillas/anatomía & histología , Semillas/genética , Glycine max/genética , Glycine max/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Cell Rep ; 30(7): 1327-38, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21384258

RESUMEN

Soybean seeds possess many qualities that make them ideal targets for the production of recombinant proteins. However, one quality often overlooked is their ability to stockpile large amounts of complex storage proteins. Because of this characteristic, we hypothesized that soybean seeds would support recombinant expression of large and complex proteins that are currently difficult or impossible to express using traditional plant and non-plant-based host systems. To test this hypothesis, we transformed soybeans with a synthetic gene encoding human thyroglobulin (hTG)-a 660 kDa homodimeric protein that is widely used in the diagnostic industry for screening and detection of thyroid disease. In the absence of a recombinant system that can produce recombinant hTG, research and diagnostic grade hTG continues to be purified from cadaver and surgically removed thyroid tissue. These less-than-ideal tissue sources lack uniform glycosylation and iodination and therefore introduce variability when purified hTG is used in sensitive ELISA screens. In this study, we report the successful expression of recombinant hTG in soybean seeds. Authenticity of the soy-derived protein was demonstrated using commercial ELISA kits developed specifically for the detection of hTG in patient sera. Western analyses and gel filtration chromatography demonstrated that recombinant hTG and thyroid-purified hTG are biologically similar with respect to size, mass, charge and subunit interaction. The recombinant protein was stable over three generations and accumulated to ~1.5% of total soluble seed protein. These results support our hypothesis that soybeans represent a practical alternative to traditional host systems for the expression of large and complex proteins.


Asunto(s)
Glycine max/metabolismo , Proteínas Recombinantes/metabolismo , Semillas/metabolismo , Tiroglobulina/metabolismo , Transformación Genética , Western Blotting , Cromatografía en Gel , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Genes Sintéticos , Vectores Genéticos , Humanos , Microscopía Confocal , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estabilidad Proteica , Rhizobium/genética , Rhizobium/metabolismo , Semillas/genética , Glycine max/genética , Tiroglobulina/genética , Transgenes
3.
Plant J ; 58(5): 883-92, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19207214

RESUMEN

Insertional mutagenesis is a cornerstone of functional genomics. High-copy transposable element systems such as Mutator (Mu) in maize (Zea mays) afford the advantage of high forward mutation rates but pose a challenge for identifying the particular element responsible for a given mutation. Several large mutant collections have been generated in Mu-active genetic stocks, but current methods limit the ability to rapidly identify the causal Mu insertions. Here we present a method to rapidly assay Mu insertions that are genetically linked to a mutation of interest. The method combines elements of MuTAIL (thermal asymmetrically interlaced) and amplification of insertion mutagenized sites (AIMS) protocols and is applicable to the analysis of single mutants or to high-throughput analyses of mutant collections. Briefly, genomic DNA is digested with a restriction enzyme and adapters are ligated. Polymerase chain reaction is performed with TAIL cycling parameters, using a fluorescently labeled Mu primer, which results in the preferential amplification and labeling of Mu-containing genomic fragments. Products from a segregating line are analyzed on a capillary sequencer. To recover a fragment of interest, PCR products are cloned and sequenced. Sequences with lengths matching the size of a band that co-segregates with the mutant phenotype represent candidate linked insertion sites, which are then confirmed by PCR. We demonstrate the utility of the method by identifying Mu insertion sites linked to seed-lethal mutations with a preliminary success rate of nearly 50%.


Asunto(s)
Análisis Mutacional de ADN/métodos , Elementos Transponibles de ADN , Genoma de Planta , Zea mays/genética , ADN de Plantas/genética , Ligamiento Genético , Mutagénesis Insercional , Fenotipo , Reacción en Cadena de la Polimerasa , Programas Informáticos
4.
Methods Mol Biol ; 1223: 275-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25300848

RESUMEN

In this chapter we describe an Agrobacterium tumefaciens transformation method of soybean that utilizes mature half seeds and regeneration from the cotyledonary node region. This method results in fertile transformed soybean plants and transgenic seed in approximately 9 months. Using mature half seeds as starting material has proven to be a reliable method that does not require additional wounding for infection to occur. We have continued to make improvements in the protocol, resulting in an efficient plant regeneration system.


Asunto(s)
Técnicas Genéticas , Glycine max/genética , Plantas Modificadas Genéticamente , Agricultura/métodos , Agrobacterium tumefaciens/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Selección Genética , Glycine max/crecimiento & desarrollo , Esterilización , Transformación Bacteriana
5.
Planta ; 229(2): 279-89, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18855007

RESUMEN

Soybean is a major crop species providing valuable feedstock for food, feed and biofuel. In recent years, considerable progress has been made in developing genomic resources for soybean, including on-going efforts to sequence the genome. These efforts have identified a large number of soybean genes, most with unknown function. Therefore, a major research priority is determining the function of these genes, especially those involved in agronomic performance and seed traits. One means to study gene function is through mutagenesis and the study of the resulting phenotypes. Transposon-tagging has been used successfully in both model and crop plants to support studies of gene function. In this report, we describe efforts to generate a transposon-based mutant collection of soybean. The Ds transposon system was used to create activation-tagging, gene and enhancer trap elements. Currently, the repository houses approximately 900 soybean events, with flanking sequence data derived from 200 of these events. Analysis of the insertions revealed approximately 70% disrupted known genes, with the majority matching sequences derived from either Glycine max or Medicago truncatula sequences. Among the mutants generated, one resulted in male-sterility and was shown to disrupt the strictosidine synthase gene. This example clearly demonstrates that it is possible to disrupt soybean gene function by insertional mutagenesis and to derive useful mutants by this approach in spite of the tetraploid nature of the soybean genome.


Asunto(s)
Elementos Transponibles de ADN/genética , Bases de Datos Genéticas , Glycine max/genética , Mutagénesis , Liasas de Carbono-Nitrógeno/genética , Liasas de Carbono-Nitrógeno/metabolismo , ADN Bacteriano/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Genoma de Planta/genética , Mutagénesis Insercional , Fenotipo , Infertilidad Vegetal/genética , Polen/citología , Glycine max/citología , Glycine max/enzimología , Transformación Genética , Transposasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA