RESUMEN
We demonstrate coherent supercontinuum generation spanning over an octave from a silicon germanium-on-silicon waveguide using â¼200fs pulses at a wavelength of 4 µm. The waveguide is engineered to provide low all-normal dispersion in the TM polarization. We validate the coherence of the generated supercontinuum via simulations, with a high degree of coherence across the entire spectrum. Such a generated supercontinuum could lend itself to pulse compression down to 22 fs.
RESUMEN
Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront of parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Our nonlinear metasurfaces produce phase gradients over a full 0-2π phase range with a 92% diffraction efficiency.
RESUMEN
We present a novel CMOS-compatible fabrication technique for convex micro-nano lens arrays (MNLAs) with high packing density on the wafer scale. By means of conformal chemical vapor deposition (CVD) of hydrogenated amorphous silicon (a-Si:H) following patterning of silicon pillars via electron beam lithography (EBL) and plasma etching, large areas of a close packed silicon lens array with the diameter from a few micrometers down to a few hundred nanometers was fabricated. The resulting structure shows excellent surface roughness and high uniformity. The optical focusing properties of the lenses at infrared wavelengths were verified by experimental measurements and numerical simulation. This approach provides a feasible solution for fabricating silicon MNLAs compatible for next generation large scale, miniaturized optical imaging detectors and related optical devices.
RESUMEN
A flexible chalcogenide fiber bundle (FB) with a resolution as high as ~31 lp/mm has been fabricated for delivering thermal images of objects at room temperature. The FB is composed of ~200,000 single fibers with a Ge-As-Te-Se glass core 15 µm in diameter and a polyetherimide (PEI) cladding 16.8 µm in diameter. These Ge-As-Te-Se/PEI fibers show good transparency in the 3-12 µm spectral region. The fabricated FB presents a filling factor of ~72% and a crosstalk of ~1%. High-quality thermal images of a human hand were obtained through the FB, demonstrating good potential of the FB for longwave infrared imaging in the areas such as medicine, industry and defense.
RESUMEN
This Letter reports the production of a supercontinuum extending from ≈2 µm to >10 µm generated using a chalcogenide buried rib waveguide pumped with 330 femtosecond pulses at 4.184 µm. This is, to the best of our knowledge, the broadest mid-infrared supercontinuum generated in any planar waveguide platform. Because the waveguide is birefringent, quasi-single-mode, and uses an optimized dispersion design, the supercontinuum is linearly polarized with an extinction ratio >100. Dual beam spectrophotometry is performed easily using this source.
RESUMEN
An unprecedented Brillouin gain of 44 dB in a photonic chip enables the realization of broadly tunable and reconfigurable integrated microwave photonic filters. More than a decade bandwidth reconfigurability from 30 up to 440 MHz, with a passband ripple <1.9 dB is achieved by tailoring the Brillouin pump. The filter central frequency is continuously tuned up to 30 GHz with no degradation of the passband response, which is a major improvement over electronic filters. Furthermore, we demonstrate pump tailoring to realize multiple bandpass filters with different bandwidths and central frequencies, paving the way for multiple on-chip microwave filters and channelizers.
RESUMEN
We report the characteristics of high Q factor chalcogenide ring resonators designed for sensing in the mid-infrared (MIR). The resonators consisted of an exposed Ge11.5As24Se64.5 core on a Ge11.5As24S64.5 bottom cladding and were fabricated in the racetrack coupled ring structure. Loaded Q factors at 5.2µm up to 58,000were obtained, corresponding to an intrinsic Q of 145,000 and a waveguide propagation loss of 0.84dB/cm.
RESUMEN
We demonstrate externally photo-induced partially-reversible tuning of the resonance of a microdisk made of AMTIR-1 (Ge(33)As(12)Se(55)). We have achieved for the first time, to the best of our knowledge, both positive and negative shift in a microresonator with external tuning. A positive resonance shift of 1 nm and a negative resonance shift of 0.5 nm on a single microdisk has been measured. We have found that this phenomenon is due to initial photo-expansion of the microdisk followed by the photo-bleaching of the AMTIR-1. The observed shifts and the underlying phenomenon is controllable by varying the illumination power (i.e. the low power illumination suppresses the photobleaching process). We measure a loaded quality factor of 1.2x10(5) at 1550nm (limited by the measuring instrument). This holds promise for non-contact low power reversible-tunning of photonic circuit elements.
RESUMEN
This work represents experimental demonstration of nonlinear diffraction in an orientation-patterned semiconducting material. By employing a new transverse geometry of interaction, three types of second-order nonlinear diffraction have been identified according to different configurations of quasi-phase matching conditions. Specifically, nonlinear Cerenkov diffraction is defined by the longitudinal quasi-phase matching condition, nonlinear Raman-Nath diffraction satisfies only the transverse quasi-phase matching condition, and nonlinear Bragg diffraction fulfils the full vectorial quasi-phase matching conditions. The study extends the concept of transverse nonlinear parametric interaction toward infrared frequency conversion in semiconductors. It also offers an effective nondestructive method to visualise and diagnose variations of second-order nonlinear coefficients inside semiconductors.
RESUMEN
A low-loss suspended core As(38)Se(62) fiber with core diameter of 4.5 µm and a zero-dispersion wavelength of 3.5 µm was used for mid-infrared supercontinuum generation. The dispersion of the fiber was measured from 2.9 to 4.2 µm and was in good correspondence with the calculated dispersion. An optical parametric amplifier delivering 320 fs pulses with a peak power of 14.8 kW at a repetition rate of 21 MHz was used to pump 18 cm of suspended core fiber at different wavelengths from 3.3 to 4.7 µm. By pumping at 4.4 µm with a peak power of 5.2 kW coupled to the fiber a supercontinuum spanning from 1.7 to 7.5 µm with an average output power of 15.6 mW and an average power >5.0 µm of 4.7 mW was obtained.
RESUMEN
An ordered chalcogenide fiber bundle with a high resolution for infrared imaging was fabricated using a stack-and-draw approach. The fiber bundle consisted of about 810,000 single fibers with an As2S3 glass core of 9 µm in diameter and a polyetherimide (PEI) polymer cladding of 10 µm in diameter. The As2S3/PEI fibers showed good transparency in the 1.5-6.5 µm spectral region. It presented a resolution of â¼45 lp/mm and a crosstalk of â¼2.5%. Fine thermal images of a hot soldering iron tip were delivered through the fiber bundle.
Asunto(s)
Calcógenos , Rayos Infrarrojos , Fibras Ópticas , Imagen Óptica/métodos , Arsenicales/química , Calcógenos/química , Modelos Moleculares , Conformación Molecular , Polímeros/química , Sulfuros/químicaRESUMEN
By pumping an 11-cm-long step-index chalcogenide fiber with â¼330 fs pulses at 4.0 µm from an optical parametric amplifier, mid-infrared supercontinuum generation spanning from â¼1.8 to â¼10 µm within a dynamic range of ±15 dB has been demonstrated at a relatively low power threshold of â¼3000 W.
RESUMEN
Three-photon absorption (3PA) has been observed as the dominant mechanism for nonlinear absorption in wide-bandgap hydrogenated amorphous silicon (a-Si:H-W) at 1.55 µm. The nonlinear index n2 and 3PA coefficient were measured to be 22 × 10(-17)m(2)/W and 5.0 × 10(-26) m(3)/W(2) respectively at 1.55 µm by using the z-scan method. This indicates that the figure of merit (FOM) of this material is intensity dependent. A value FOM>60 is predicted at intensities below 0.5 GW/cm(2) which is the maximum practical intensity for high-bit-rate (>160 GB/s) alloptical signal processing. The nonlinear phase change in a-Si:H-W has been compared with other common nonlinear materials (c-Si, As(2)S(3), Ge(11.5)As(24)Se(64.5)) for a 2 cm long waveguide with a-Si:H-W showing the greatest potential for integrated devices for all-optical processing with a high nonlinear index and negligible nonlinear absorption at intensities < 0.5 GW/cm(2).
RESUMEN
We present the first microwave photonic phase shifter using stimulated Brillouin scattering (SBS) on-chip. The unique ability of SBS to generate both narrowband gain and loss resonances allows us to achieve low ±1.5 dB amplitude fluctuations, which is a record for integrated devices, along with 240° continuously tunable phase shift. Contrary to previous SBS-based approaches, the phase shift tuning mechanism relies on tuning the power, not the frequency, of two SBS pumps, making it more suited to on-chip implementations. We finally demonstrate that SBS pump depletion leads to amplitude response fluctuations, as well as increasing the insertion loss of the phase shifter. Advantageously, shorter integrated platforms possess higher pump depletion thresholds compared to long fibers, thus offering greater potential for reducing the insertion loss.
Asunto(s)
Microondas , Dispositivos Ópticos , Fotones , Dispersión de Radiación , Análisis EspectralRESUMEN
Chiral gyroid photonic crystals are fabricated in the high refractive index chalcogenide glass arsenic trisulfide with an adaptive optics enhanced direct laser writing system. The severe spherical aberration imparted when focusing into the arsenic trisulfide is mitigated with a defocus decoupled aberration compensation technique that reduces the level of aberration that must be compensated by over an order of magnitude. The fabricated gyroids are shown to have excellent uniformity after our adaptive optics method is employed, and the transmission spectra of the gyroids are shown to have good agreement with numerical simulations that are based on a uniform and diffraction limited fabrication resolution.
Asunto(s)
Calcógenos/química , Rayos Láser , Lentes , Refractometría/métodos , Calcógenos/efectos de la radiación , Vidrio/química , Vidrio/efectos de la radiación , Ensayo de Materiales , Propiedades de Superficie/efectos de la radiaciónRESUMEN
We report the characteristics of low-loss chalcogenide waveguides for sensing in the mid-infrared (MIR). The waveguides consisted of a Ge11.5As24Se64.5 rib waveguide core with a 10nm fluoropolymer coating on a Ge11.5As24S64.5 bottom cladding and were fabricated by thermal evaporation, photolithography and ICP plasma etching. Over most of the functional group band from 1500 to 4000 cm⻹ the losses were < 1 dB/cm with a minimum of 0.3 dB/cm at 2000 cm⻹. The basic capabilities of these waveguides for spectroscopy were demonstrated by measuring the absorption spectrum of soluble Prussian blue in Dimethyl Sulphoxide.
Asunto(s)
Calcógenos/química , Ferrocianuros/análisis , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Rayos Infrarrojos , SolubilidadRESUMEN
We report phase-sensitive amplification of light using χ((3)) parametric processes in a chalcogenide ridge waveguide. By spectrally slicing pump, signal and idler waves from a single pulsed source, we are able to observe 9.9 dB of on-chip phase-sensitive extinction with a signal-degenerate dual pump four-wave mixing architecture in good agreement with numerical simulations.
Asunto(s)
Amplificadores Electrónicos , Calcógenos/química , Rayos Láser , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , FotonesRESUMEN
We report the first demonstration of a photonic-chip laser frequency sensor using Brillouin mutually-modulated cross-gain modulation (MMXGM). A large sensitivity (~9.5 mrad/kHz) of the modulation phase shift to probe carrier frequency is demonstrated at a modulation frequency of 50 kHz using Brillouin MMXGM in a ~7 cm long chalcogenide rib waveguide.
Asunto(s)
Calcógenos/química , Rayos Láser , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Telecomunicaciones/instrumentación , Diseño de Equipo , Análisis de Falla de EquipoRESUMEN
We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As2S3 chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.
Asunto(s)
Calcógenos/química , Redes de Comunicación de Computadores/instrumentación , Refractometría/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Telecomunicaciones/instrumentación , Birrefringencia , Diseño de Equipo , Análisis de Falla de EquipoRESUMEN
Self-sustained all-optical poling second-harmonic generation (SHG) experiments are conducted in single-core and multicore dye-doped poly(methyl methacrylate) optical fibers. By tuning the polarization of the fundamental beam, the SHG signal is degraded and is reconstructed spontaneously up to its initial level. We found a new situation in which the photo-induced self-organization of azo polymers creates a well-ordered periodic structure.