Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36982981

RESUMEN

Computational approaches in immune-oncology therapies focus on using data-driven methods to identify potential immune targets and develop novel drug candidates. In particular, the search for PD-1/PD-L1 immune checkpoint inhibitors (ICIs) has enlivened the field, leveraging the use of cheminformatics and bioinformatics tools to analyze large datasets of molecules, gene expression and protein-protein interactions. Up to now, there is still an unmet clinical need for improved ICIs and reliable predictive biomarkers. In this review, we highlight the computational methodologies applied to discovering and developing PD-1/PD-L1 ICIs for improved cancer immunotherapies with a greater focus in the last five years. The use of computer-aided drug design structure- and ligand-based virtual screening processes, molecular docking, homology modeling and molecular dynamics simulations methodologies essential for successful drug discovery campaigns focusing on antibodies, peptides or small-molecule ICIs are addressed. A list of recent databases and web tools used in the context of cancer and immunotherapy has been compilated and made available, namely regarding a general scope, cancer and immunology. In summary, computational approaches have become valuable tools for discovering and developing ICIs. Despite significant progress, there is still a need for improved ICIs and biomarkers, and recent databases and web tools have been compiled to aid in this pursuit.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Simulación del Acoplamiento Molecular , Inmunoterapia/métodos
2.
J Vis Exp ; (200)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37929949

RESUMEN

Sialic acids are negatively charged monosaccharides typically found at the termini of cell surface glycans. Due to their hydrophilicity and biophysical characteristics, they are involved in numerous biological processes, such as modulation of the immune response, recognition of self and non-self antigens, carbohydrate-protein interactions, etc. The cellular content of sialic acid is regulated by sialidase, which catalyzes the removal of sialic acid residues. Several studies have shown that sialo-glycans are critical in monitoring immune surveillance by engaging with cis and trans inhibitory Siglec receptors on immune cells. Likewise, glyco-immune checkpoints in cancer are becoming crucial targets for developing immunotherapies. Additionally, dendritic cells (DCs) are envisioned as an important component in immunotherapies, especially in cancer research, due to their unique role as professional antigen-presenting cells (APC) and their capacity to trigger adaptive immune responses and generate immunologic memory. Nevertheless, the function of DCs is dependent on their full maturation. Immature DCs have an opposing function to mature DCs and a high sialic acid content, which further dampens their maturation level. This downregulates the ability of immature DCs to activate T-cells, leading to a compromised immune response. Consequently, removing sialic acid from the cell surface of human DCs induces their maturation, thus increasing the expression of MHC molecules and antigen presentation. In addition, it can restore the expression of co-stimulatory molecules and IL-12, resulting in DCs having a higher ability to polarize T-cells toward a Th1 phenotype and specifically activate cytotoxic T-cells to kill tumor cells. Therefore, sialic acid has emerged as a key modulator of DCs and is being used as a novel target to advance their therapeutic use. This study provides a unique approach to treat in vitro monocyte-derived DCs with sialidase, aimed at generating DC populations with different cell surface sialic acid phenotypes and tailored maturation and co-stimulatory profiles.


Asunto(s)
Monocitos , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/metabolismo , Monocitos/metabolismo , Células Dendríticas , Neuraminidasa , Polisacáridos/metabolismo , Diferenciación Celular
3.
Genes (Basel) ; 12(11)2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34828417

RESUMEN

Major advances have recently been made in the development and application of CFTR (cystic fibrosis transmembrane conductance regulator) mutation class-specific modulator therapies, but to date, there are no approved modulators for Class I mutations, i.e., those introducing a premature termination codon (PTC) into the CFTR mRNA. Such mutations induce nonsense-mediated decay (NMD), a cellular quality control mechanism that reduces the quantity of PTC bearing mRNAs, presumably to avoid translation of potentially deleterious truncated CFTR proteins. The NMD-mediated reduction of PTC-CFTR mRNA molecules reduces the efficacy of one of the most promising approaches to treatment of such mutations, namely, PTC readthrough therapy, using molecules that induce the incorporation of near-cognate amino acids at the PTC codon, thereby enabling translation of a full-length protein. In this study, we measure the effect of three different PTC mutations on the abundance, integrity, and stability of respective CFTR mRNAs, using CFTR specific RT-qPCR-based assays. Altogether, our data suggest that optimized rescue of PTC mutations has to take into account (1) the different steady-state levels of the CFTR mRNA associated with each specific PTC mutation; (2) differences in abundance between the 3' and 5' regions of CFTR mRNA, even following PTC readthrough or NMD inhibition; and (3) variable effects on CFTR mRNA stability for each specific PTC mutation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Degradación de ARNm Mediada por Codón sin Sentido , Línea Celular , Codón sin Sentido , Codón de Terminación , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Mucosa Respiratoria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA