Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2211092120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634141

RESUMEN

Recent experimental and computational investigations have shown that trace amounts of surfactants, unavoidable in practice, can critically impair the drag reduction of superhydrophobic surfaces (SHSs), by inducing Marangoni stresses at the air-liquid interface. However, predictive models for realistic SHS geometries do not yet exist, which has limited the understanding and mitigation of these adverse surfactant effects. To address this issue, we derive a model for laminar, three-dimensional flow over SHS gratings as a function of geometry and soluble surfactant properties, which together encompass 10 dimensionless groups. We establish that the grating length g is the key geometric parameter and predict that the ratio between actual and surfactant-free slip increases with g2. Guided by our model, we perform synergistic numerical simulations and microfluidic experiments, finding good agreement with the theory as we vary surfactant type and SHS geometry. Our model also enables the estimation, based on velocity measurements, of a priori unknown properties of surfactants inherently present in microfluidic systems. For SHSs, we show that surfactant effects can be predicted by a single parameter, representing the ratio between the grating length and the interface length scale beyond which the flow mobilizes the air-water interface. This mobilization length is more sensitive to the surfactant chemistry than to its concentration, such that even trace-level contaminants may significantly increase drag if they are highly surface active. These findings advance the fundamental understanding of realistic interfacial flows and provide practical strategies to maximize superhydrophobic drag reduction.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Tensoactivos/química , Microfluídica , Lipoproteínas , Interacciones Hidrofóbicas e Hidrofílicas
2.
Nano Lett ; 20(10): 7744-7750, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32909761

RESUMEN

As coronavirus disease 2019 (COVID-19) continues to spread, a detailed understanding on the transmission mechanisms is of paramount importance. The disease transmits mainly through respiratory droplets and aerosol. Although models for the evaporation and trajectory of respiratory droplets have been developed, how the environment impacts the transmission of COVID-19 is still unclear. In this study, we investigate the propagation of respiratory droplets and aerosol particles generated by speech under a wide range of temperatures (0-40 °C) and relative humidity (0-92%) conditions. We show that droplets can travel three times farther in low-temperature and high-humidity environment, whereas the number of aerosol particles increases in high-temperature and low-humidity environments. The results also underscore the importance of proper ventilation, as droplets and aerosol spread significantly farther in airstreams. This study contributes to the understanding of the environmental impact on COVID-19 transmission.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/transmisión , Modelos Biológicos , Neumonía Viral/transmisión , Aerosoles , Microbiología del Aire , Movimientos del Aire , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Espiración , Gravitación , Humanos , Humedad , Nanopartículas , Pandemias , Tamaño de la Partícula , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Temperatura
3.
Proc Natl Acad Sci U S A ; 114(28): 7254-7259, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655848

RESUMEN

Superhydrophobic surfaces (SHSs) have the potential to achieve large drag reduction for internal and external flow applications. However, experiments have shown inconsistent results, with many studies reporting significantly reduced performance. Recently, it has been proposed that surfactants, ubiquitous in flow applications, could be responsible by creating adverse Marangoni stresses. However, testing this hypothesis is challenging. Careful experiments with purified water already show large interfacial stresses and, paradoxically, adding surfactants yields barely measurable drag increases. To test the surfactant hypothesis while controlling surfactant concentrations with precision higher than can be achieved experimentally, we perform simulations inclusive of surfactant kinetics. These reveal that surfactant-induced stresses are significant at extremely low concentrations, potentially yielding a no-slip boundary condition on the air-water interface (the "plastron") for surfactant concentrations below typical environmental values. These stresses decrease as the stream-wise distance between plastron stagnation points increases. We perform microchannel experiments with SHSs consisting of stream-wise parallel gratings, which confirm this numerical prediction, while showing near-plastron velocities significantly slower than standard surfactant-free predictions. In addition, we introduce an unsteady test of surfactant effects. When we rapidly remove the driving pressure following a loading phase, a backflow develops at the plastron, which can only be explained by surfactant gradients formed in the loading phase. This demonstrates the significance of surfactants in deteriorating drag reduction and thus the importance of including surfactant stresses in SHS models. Our time-dependent protocol can assess the impact of surfactants in SHS testing and guide future mitigating designs.

5.
ACS Cent Sci ; 10(3): 684-694, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38559290

RESUMEN

Fast and programmable transport of droplets on a substrate is desirable in microfluidic, thermal, biomedical, and energy devices. Photoresponsive surfactants are promising candidates to manipulate droplet motion due to their ability to modify interfacial tension and generate "photo-Marangoni" flow under light stimuli. Previous works have demonstrated photo-Marangoni droplet migration in liquid media; however, migration on other substrates, including solid and liquid-infused surfaces (LIS), remains an outstanding challenge. Moreover, models of photo-Marangoni migration are still needed to identify optimal photoswitches and assess the feasibility of new applications. In this work, we demonstrate 2D droplet motion on liquid surfaces and on LIS, as well as rectilinear motion in solid capillary tubes. We synthesize photoswitches based on spiropyran and merocyanine, capable of tension changes of up to 5.5 mN/m across time scales as short as 1.7 s. A millimeter-sized droplet migrates at up to 5.5 mm/s on a liquid, and 0.25 mm/s on LIS. We observe an optimal droplet size for fast migration, which we explain by developing a scaling model. The model also predicts that faster migration is enabled by surfactants that maximize the ratio between the tension change and the photoswitching time. To better understand migration on LIS, we visualize the droplet flow using tracer particles, and we develop corresponding numerical simulations, finding reasonable agreement. The methods and insights demonstrated in this study enable advances for manipulation of droplets for microfluidic, thermal and water harvesting devices.

6.
ACS Cent Sci ; 8(2): 235-245, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35233455

RESUMEN

The development of noninvasive and robust strategies for manipulation of droplets and bubbles is crucial in applications such as boiling and condensation, electrocatalysis, and microfluidics. In this work, we realize the swift departure of droplets and bubbles from solid substrates by introducing photoresponsive surfactants and applying asymmetric illumination, thereby inducing a "photo-Marangoni" lift force. Experiments show that a pinned toluene droplet can depart the substrate in only 0.38 s upon illumination, and the volume of an air bubble at departure is reduced by 20%, indicating significantly faster departure. These benefits can be achieved with moderate light intensities and dilute surfactant concentrations, without specially fabricated substrates, which greatly facilitates practical applications. Simulations suggest that the net departure force includes contributions from viscous stresses directly caused by the Marangoni flow, as well as from pressure buildup due to flow stagnation at the contact line. The manipulation scheme proposed here shows potential for applications requiring droplet and bubble removal from working surfaces.

7.
Phys Rev Lett ; 104(4): 044504, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20366718

RESUMEN

In this Letter, we address two issues affecting the use of a variational argument to determine stability of conservative fluid systems. We build on ideas from bifurcation theory, and thereby for families of steady flows, we link turning points in a velocity-impulse diagram to gains or losses of stability. We further introduce concepts from imperfection theory into these problems, enabling us to reveal hidden solution branches. Our approach applies to a wide range of flows. As an illustration involving a well-defined problem, we study a pair of counterrotating vortices. The approach results in stability boundaries in agreement with linear analysis, yet further enables us to discover a new family of steady vortices, which surprisingly do not exhibit any symmetry. All applications of our approach so far, using imperfect-velocity-impulse (IVI) diagrams, lead us to the discovery of lower-symmetry solutions.

8.
J Fluid Mech ; 8832020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31806916

RESUMEN

Superhydrophobic surfaces (SHSs) have the potential to reduce drag at solid boundaries. However, multiple independent studies have recently shown that small amounts of surfactant, naturally present in the environment, can induce Marangoni forces that increase drag, at least in the laminar regime. To obtain accurate drag predictions, one must solve the mass, momentum, bulk surfactant and interfacial surfactant conservation equations. This requires expensive simulations, thus preventing surfactant from being widely considered in SHS studies. To address this issue, we propose a theory for steady, pressure-driven, laminar, two-dimensional flow in a periodic SHS channel with soluble surfactant. We linearise the coupling between flow and surfactant, under the assumption of small concentration, finding a scaling prediction for the local slip length. To obtain the drag reduction and interfacial shear, we find a series solution for the velocity field by assuming Stokes flow in the bulk and uniform interfacial shear. We find how the slip and drag depend on the nine dimensionless groups that together characterize the surfactant transport near SHSs, the gas fraction and the normalized interface length. Our model agrees with numerical simulations spanning orders of magnitude in each dimensionless group. The simulations also provide the constants in the scaling theory. Our model significantly improves predictions relative to a surfactant-free one, which can otherwise overestimate slip and underestimate drag by several orders of magnitude. Our slip length model can provide the boundary condition in other simulations, thereby accounting for surfactant effects without having to solve the full problem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA