Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 42(6): e111858, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36562188

RESUMEN

Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.


Asunto(s)
Solanum lycopersicum , Fosforilación , Glutamato-Amoníaco Ligasa/metabolismo , Péptidos/metabolismo , Reguladores del Crecimiento de las Plantas
2.
Plant Physiol ; 194(4): 2739-2754, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38214105

RESUMEN

Phytosulfokine (PSK), a plant peptide hormone with a wide range of biological functions, is recognized by its receptor PHYTOSULFOKINE RECEPTOR 1 (PSKR1). Previous studies have reported that PSK plays important roles in plant growth, development, and stress responses. However, the involvement of PSK in fruit development and quality formation remains largely unknown. Here, using tomato (Solanum lycopersicum) as a research model, we show that exogenous application of PSK promotes the initiation of fruit ripening and quality formation, while these processes are delayed in pskr1 mutant fruits. Transcriptomic profiling revealed that molecular events and metabolic pathways associated with fruit ripening and quality formation are affected in pskr1 mutant lines and transcription factors are involved in PSKR1-mediated ripening. Yeast screening further identified that DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2F (DREB2F) interacts with PSKR1. Silencing of DREB2F delayed the initiation of fruit ripening and inhibited the promoting effect of PSK on fruit ripening. Moreover, the interaction between PSKR1 and DREB2F led to phosphorylation of DREB2F. PSK improved the efficiency of DREB2F phosphorylation by PSKR1 at the tyrosine-30 site, and the phosphorylation of this site increased the transcription level of potential target genes related to the ripening process and functioned in promoting fruit ripening and quality formation. These findings shed light on the involvement of PSK and its downstream signaling molecule DREB2F in controlling climacteric fruit ripening, offering insights into the regulatory mechanisms governing ripening processes in fleshy fruits.


Asunto(s)
Hormonas Peptídicas , Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Hormonas Peptídicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo
3.
ACS Omega ; 9(1): 422-436, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222568

RESUMEN

Injecting water with chemicals to generate emulsions in the reservoir is a promising method for enhancing heavy oil recovery because oil-in-water (O/W) emulsions significantly reduce oil viscosity. To enhance heavy oil recovery efficiency, we developed new star-like branched AM-SSS copolymers (SB-PAMs) with reduction in the viscosity of the heavy oil emulsion, which was synthesized by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. The core structure of the branched polymer was RAFT polymerization of acrylamide (AM) and N,N'-methylene bis-acrylamide (BisAM), in the presence of 3-(((benzylthio)carbonothioyl)thio)propanoic acid as a chain transfer agent, followed by chain extension with AM and SSS. The core structures were achieved by incorporation of total monomer ratios [BisAM]/[AM] of 1:11. The expansion of the core structures by copolymerization of AM and SSS resulted in star-like branched polymer SB-PAM-co-SSS with apparent molecular weights ranging from 240 to 2381 kDa. 1H-nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) confirmed the synthesized polymer structure. The molecular weight was determined by gel permeation chromatography (GPC). The polydispersity coefficient was between 1 and 7, which has a broad molecular weight distribution. The polymer dissolves only 0.75 h in deionized water, faster than conventional polyacrylamide. At 50 °C, the viscosity of the 1000 mg/L SB-polymer solution can reach up to 45 mPa·s. First, heavy oil viscosity reduction by 800 mg/L SB polymer can reach 91.7%, at a water dehydration rate of 90.4%; second, with 0.6 PV injection, 800 mg/L SB polymer improved oil recovery up to 23.66% after water flooding; and third, SB-polymer-assisted hot water flooding shows that heavy oil recovery improved by 19.46% at 110 °C with 0.6 pore volume (PV) SB-polymer injection. This novel branched chain polymer with heavy oil emulsion capability will shed light on high-temperature polymer flooding and the development of a new candidate structure for heavy oil viscosity reduction.

4.
Polymers (Basel) ; 15(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514507

RESUMEN

The purpose of this study is to clarify the difference in oil production rules of conglomerate reservoirs with different pore structures during surfactant-polymer (SP) binary flooding and to ensure the efficient development of conglomerate reservoirs. In this paper, the full-diameter natural cores from the conglomerate reservoir of the Triassic Kexia Formation in the seventh middle block of the Karamay Oilfield (Xinjiang, China) are selected as the research objects. Two schemes of single constant viscosity (SCV) and echelon viscosity reducing (EVR) are designed to displace oil from three main oil-bearing lithologies, namely fine conglomerate, glutenite, and sandstone. Through comprehensive analysis of parameters, such as oil recovery rate, water content, and injection pressure difference, the influence of lithology on the enhanced oil recovery (EOR) of the EVR scheme is determined, which in turn reveals the differences in the step-wise oil production rules of the three lithologies. The experimental results show that for the three lithological reservoirs, the oil displacement effect of the EVR scheme is better than that of the SCV scheme, and the differences in recovery rates between the two schemes are 9.91% for the fine conglomerate, 6.77% for glutenite, and 6.69% for sandstone. By reducing the molecular weight and viscosity of the SP binary system, the SCV scheme achieves the reconstruction of the pressure field and the redistribution of seepage paths of chemical micelles with different sizes, thus, achieving the step-wise production of crude oil in different scale pore throats and enhancing the overall recovery of the reservoir. The sedimentary environment and diagenesis of the three types of lithologies differ greatly, resulting in diverse microscopic pore structures and differential seepage paths and displace rules of SP binary solutions, ultimately leading to large differences in the enhanced oil recoveries of different lithologies. The fine conglomerate reservoir has the strongest anisotropy, the worst pore throat connectivity, and the lowest water flooding recovery rate. Since the fine conglomerate reservoir has the strongest anisotropy, the worst pore throats connectivity, and the lowest water flooding recovery, the EVR scheme shows a good "water control and oil enhancement" development feature and the best step-wise oil production effect. The oil recovery rate of the two schemes for fine conglomerate shows a difference of 10.14%, followed by 6.36% for glutenite and 5.10% for sandstone. In addition, the EOR of fine conglomerate maintains a high upward trend throughout the chemical flooding, indicating that the swept volume of small pore throats gradually expands and the producing degree of the remaining oil in it gradually increases. Therefore, the fine conglomerate is the most suitable lithology for the SCV scheme among the three lithologies of the conglomerate reservoirs.

5.
Front Plant Sci ; 13: 1029901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340349

RESUMEN

As the unique source of carbon in the atmosphere, carbon dioxide (CO2) exerts a strong impact on crop yield and quality. However, CO2 deficiency in greenhouses during the daytime often limits crop productivity. Crucially, climate warming, caused by increased atmospheric CO2, urges global efforts to implement carbon reduction and neutrality, which also bring challenges to current CO2 enrichment systems applied in greenhouses. Thus, there is a timely need to develop cost-effective and environmentally friendly CO2 enrichment technologies as a sustainable approach to promoting agricultural production and alleviating environmental burdens simultaneously. Here we review several common technologies of CO2 enrichment in greenhouse production, and their characteristics and limitations. Some control strategies of CO2 enrichment in distribution, period, and concentration are also discussed. We further introduce promising directions for future CO2 enrichment including 1) agro-industrial symbiosis system (AIS); 2) interdisciplinary application of carbon capture and utilization (CCU); and 3) optimization of CO2 assimilation in C3 crops via biotechnologies. This review aims to provide perspectives on efficient CO2 utilization in greenhouse production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA