Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Mol Biol ; 74(4-5): 367-80, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20803312

RESUMEN

In Arabidopsis thaliana, the salt overly sensitive (SOS) pathway plays an essential role in maintaining ion homeostasis and conferring salt tolerance. Here we identified three SOS components in the woody plant Populus trichocarpa, designated as PtSOS1, PtSOS2 and PtSOS3. These putative SOS genes exhibited an overlapping but distinct expression pattern in poplar plants and the transcript levels of SOS1 and SOS2 were responsive to salinity stress. In poplar mesophyll protoplasts, PtSOS1 was specifically localized in the plasma membrane, whereas PtSOS2 was distributed throughout the cell, and PtSOS3 was predominantly targeted to the plasma membrane. Heterologous expression of PtSOS1, PtSOS2 and PtSOS3 could rescue salt-sensitive phenotypes of the corresponding Arabidopsis sos mutants, demonstrating that the Populus SOS proteins are functional homologues of their Arabidopsis counterpart. In addition, PtSOS3 interacted with, and recruited PtSOS2 to the plasma membrane in yeast and in planta. Reconstitution of poplar SOS pathway in yeast cells revealed that PtSOS2 and PtSOS3 acted coordinately to activate PtSOS1. Moreover, expression of the constitutively activated form of PtSOS2 partially complemented the sos3 mutant but not sos1, suggesting that PtSOS2 functions genetically downstream of SOS3 and upstream of SOS1. These results indicate a strong functional conservation of SOS pathway responsible for salt stress signaling from herbaceous to woody plants.


Asunto(s)
Proteínas de Plantas/genética , Populus/genética , Tolerancia a la Sal/genética , Cloruro de Sodio/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Prueba de Complementación Genética , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Populus/metabolismo , Populus/fisiología , Técnicas del Sistema de Dos Híbridos
2.
Physiol Plant ; 136(4): 407-25, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19470090

RESUMEN

Inositol polyphosphate kinases play important roles in diverse cellular processes. In this study, the function of an inositol polyphosphate kinase gene homolog named ThIPK2 from a dicotyledonous halophyte Thellungiella halophila was investigated. The deduced translation product (ThIPK2) shares 85% identity with the Arabidopsis inositol polyphosphate kinase AtIPK2beta. Transient expression of ThIPK2-YFP fusion protein in tobacco (Nicotiana tabacum) protoplasts indicates that the protein is localized to the nucleus and plasma membrane, with a minor localization to the cytosol. Heterologous expression of ThIPK2 in ipk2Delta (also known as arg82Delta), a yeast mutant strain that lacks inositol polyphosphate multikinase (Ipk2) activity, rescued the mutant's salt-, osmotic- and temperature-sensitive growth defects. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed ubiquitous expression of ThIPK2 in various tissues, including roots, rosette leaves, cauline leaves, stem, flowers and siliques, and shoot ThIPK2 transcript was strongly induced by NaCl or mannitol in T. halophila as exhibited by real-time PCR analysis. Transgenic expression of ThIPK2 in Brassica napus led to significantly improved salt-, dehydration- and oxidative stress resistance. Furthermore, the transcripts of various stress responsive marker genes increased in ThIPK2 transgenic plants under salt stress condition. These results suggest that ThIPK2 is involved in plant stress responses, and for the first time demonstrate that ThIPK2 could be a useful candidate gene for improving drought and salt tolerance in important crop plants by genetic transformation.


Asunto(s)
Brassica napus/enzimología , Brassicaceae/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Brassica napus/genética , Brassicaceae/enzimología , Deshidratación/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantas Tolerantes a la Sal/enzimología , Plantas Tolerantes a la Sal/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA