RESUMEN
BACKGROUND: Diabetic retinopathy (DR) is one of the most common complications of diabetes worldwide. The aim of this study was to assess the prevalence of DR in hospitalized patients with type 2 diabetes (T2DM) in Tibet and to identify risk factors that may influence the occurrence of DR. METHODS: This was a cross-sectional study conducted in a third-class hospital in the Tibet Autonomous Region. The prevalence of DR in hospitalized patients with T2DM was measured. Univariate and multivariate logistic regression, restricted cubic spline (RCS) analysis and receiver-operating characteristic curve analysis were used to investigate the risk factors for DR. RESULTS: The prevalence of DR was 29.3%. The duration of diabetes; concentrations of 25-OH-VitD3, hemoglobin, fasting insulin, alanine aminotransferase, total bilirubin, and creatinine; and HOMA-IR were significantly different between DR patients and non-DR patients (all P < 0.05). Univariate and multivariate logistic regression revealed that a longer duration of diabetes and lower 25-OH-VitD3 levels were associated with increased DR risk. RCS analysis suggested overall positive associations of the duration of diabetes and 25-OH-VitD3 concentrations with DR risk (P nonlinearity < 0.05). The turning points for the duration of diabetes and 25-OH-VitD3 concentrations were 5.1 years and 10.6 ng/mL, respectively. The sensitivity, specificity, and area under the receiver-operating characteristic curve for the combination of the duration of diabetes and 25-OH-VitD3 levels were 79.4%, 69.4% and 0.764, respectively. CONCLUSIONS: Given the high prevalence of DR in hospitalized patients with T2DM in Tibet, vitamin D supplementation seems to be important in the prevention of DR to some degree.
Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Deficiencia de Vitamina D , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Estudios Transversales , Femenino , Masculino , Retinopatía Diabética/epidemiología , Retinopatía Diabética/etiología , Retinopatía Diabética/sangre , Persona de Mediana Edad , Tibet/epidemiología , Factores de Riesgo , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/sangre , Prevalencia , Anciano , AdultoRESUMEN
Wheat is the most widely grown crop in the world; its production is severely disrupted by increasing water deficit. Plant roots play a crucial role in the uptake of water and perception and transduction of water deficit signals. In the past decade, the mechanisms of drought tolerance have been frequently reported; however, the transcriptome and metabolome regulatory network of root responses to water stress has not been fully understood in wheat. In this study, the global transcriptomic and metabolomics profiles were employed to investigate the mechanisms of roots responding to water stresses using the drought-tolerant (DT) and drought-susceptible (DS) wheat genotypes. The results showed that compared with the control group, wheat roots exposed to polyethylene glycol (PEG) had 25941 differentially expressed genes (DEGs) and more upregulated genes were found in DT (8610) than DS (7141). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs of the drought-tolerant genotype were preferably enriched in the flavonoid biosynthetic process, anthocyanin biosynthesis and suberin biosynthesis. The integrated analysis of the transcriptome and metabolome showed that in DT, the KEGG pathways, including flavonoid biosynthesis and arginine and proline metabolism, were shared by differentially accumulated metabolites (DAMs) and DEGs at 6 h after treatment (HAT) and pathways including alanine, aspartate, glutamate metabolism and carbon metabolism were shared at 48 HAT, while in DS, the KEGG pathways shared by DAMs and DEGs only included arginine and proline metabolism at 6 HAT and the biosynthesis of amino acids at 48 HAT. Our results suggest that the drought-tolerant genotype may relieve the drought stress by producing more ROS scavengers, osmoprotectants, energy and larger roots. Interestingly, hormone signaling plays an important role in promoting the development of larger roots and a higher capability to absorb and transport water in drought-tolerant genotypes.
Asunto(s)
Deshidratación , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Metabolómica , Raíces de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Deshidratación/genética , Deshidratación/metabolismo , Metaboloma , Estrés Fisiológico/genéticaRESUMEN
BACKGROUND: Since ovarian cancer leads to the poor prognosis in women all over the world, we aim to construct an immune-related lncRNAs signature to improve the survival of ovarian cancer patients. METHODS: Normal and cancer patient samples and corresponding clinical data of ovarian were obtained from The Genotype-Tissue Expression (GTEx) portal and The Cancer Genome Atlas (TCGA) database. The predictive signature was constructed by the lasso penalty Cox proportional hazard regression model. The division of different risk groups was accounting for the optimal critical value of the time-dependent Receiver Operating Characteristic (ROC) curve. Finally, we validated and evaluated the application of this prognostic signature based on the clinical factors, chemo-sensitivity and immune status of different risk groups. RESULTS: The signature was established from 145 DEirlncRNAs and can be shown as an independent prognostic risk factor with accurate prediction on overall survival in ovarian cancer patients. Further analysis on the application of the prognostic signature showed that patients with low-risk had a better sensitivity to chemotherapy and a higher immunogenicity. CONCLUSION: We constructed and verified an effective signature based on DEirlncRNA pairs, which could predict the prognosis, drug sensitivity and immune status of ovarian cancer patients and promote the prognostic estimation and individualized treatment.
RESUMEN
Emerging evidence suggests that dysregulation of long non-coding RNA (lncRNA) plays a key role in tumorigenesis. The lncRNA, HOXA transcript at the distal tip (HOTTIP), has been reported to be up-regulated in multiple cancers, including breast cancer, and is involved in various biological processes, including the maintenance of stemness. However, the biological function and underlying modulatory mechanism of HOTTIP in breast cancer stem cells (BCSCs) remains unknown. In this study, we found that HOTTIP was markedly up-regulated in BCSCs and had a positive correlation with breast cancer progression. Functional studies revealed that overexpression of HOTTIP markedly promoted cell clonogenicity, increased the expression of the stem cell markers, OCT4 and SOX2, and decreased the expression of the differentiation markers, CK14 and CK18, in breast cancer cells. Knockdown of HOTTIP inhibited the CSC-like properties of BCSCs. Consistently, depletion of HOTTIP suppressed tumour growth in a humanized model of breast cancer. Mechanistic studies demonstrated that HOTTIP directly binds to miR-148a-3p and inhibits the mediation of WNT1, which leads to inactivation of the Wnt/ß-catenin signalling pathway. Our study is the first to report that HOTTIP regulates the CSC-like properties of BCSCs by as a molecular sponge for miR-148a-3p to increase WNT1 expression, offering a new target for breast cancer therapy.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteína Wnt1/metabolismo , Animales , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba/genéticaRESUMEN
Increasing evidence has verified that small nucleolar RNAs (snoRNAs) play significant roles in tumorigenesis and exhibit prognostic value in clinical practice. In the study, we analysed the expression profile and clinical relevance of snoRNAs from TCGA database including 530 ccRCC (clear cell renal cell carcinoma) and 72 control cases. By using univariate and multivariate Cox analysis, we established a six-snoRNA signature and divided patients into high-risk or low-risk groups. We found patients in high-risk group had significantly shorter overall survival and recurrence-free survival than those in low-risk group in test series, validation series and entire series by Kaplan-Meier analysis. We also confirmed this signature had a great accuracy and specificity in 64 clinical tissue cases and 50 serum samples. Then, depending on receiver operating characteristic curve analysis we found the six-snoRNA signature was an superior indicator better than conventional clinical factors (AUC = 0.732). Furthermore, combining the signature with TNM stage or Fuhrman grade were the optimal indicators (AUC = 0.792; AUC = 0.800) and processed the clinical applied value for ccRCC. Finally, we found the SNORA70B and its hose gene USP34 might directly regulate Wnt signalling pathway to promote tumorigenesis in ccRCC. In general, our study established a six-snoRNA signature as an independent and superior diagnosis and prognosis indicator for ccRCC.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , ARN Nucleolar Pequeño/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma de Células Renales/patología , Estudios de Casos y Controles , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/patología , Análisis Multivariante , Pronóstico , Factores de Riesgo , Transducción de Señal/genética , Proteasas Ubiquitina-Específicas/genéticaRESUMEN
Lung adenocarcinoma (LUAD) is one of the most malignant tumor types worldwide. Our objective was to identify a genetic signature that could predict the prognosis of patients with LUAD. We extracted gene data sets from The Cancer Genome Atlas and obtained differentially expressed genes that were highly expressed at every stage. These genes were analyzed using gene set enrichment analysis to obtain four biological processes associated with LUAD. Subsequently, Cox univariate and multivariate analyses were performed to generate four optimized models (G2M checkpoint, E2F targets, mitotic spindle, and glycolysis). We identified a mitotic spindle-related signature (KIF15, BUB1, CCNB2, CDK1, KIF4A, DLGAP5, ECT2, and ANLN), which could be an independent prognostic indicator, to predict the prognosis of patients with LUAD. This new discovery should offer opportunities to explore the pathogenesis of LUAD and prove clinically useful in predicting LUAD patient prognosis.
Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Pulmonares/metabolismo , Huso Acromático/metabolismo , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de SupervivenciaRESUMEN
Gastric cancer (GC) is one of the most fatal common cancers in worldwide. Helicobacter pylori (H. pylori) infection is closely related to the development of GC, although the mechanism is still unclear. In our study, we aim to develop a robust messenger RNA (mRNA) signature associated with H. pylori (-) GC that can sensitively and efficiently predict the prognostic. The RNA-seq expression profile and corresponding clinical data of 598 gastric cancer samples and 63 normal samples obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database. Using gene set enrichment analysis H. pylori (+) GC and H. pylori (-) GC patients and normal samples to select certain genes for further analysis. Using univariate and multivariate Cox regression model to establish a gene signature for predicting the overall survival (OS). Finally, we identified G2/M related seven-mRNA signature (TGFB1, EGF, MKI67, ILF3, INCENP, TNPO2, and CHAF1A) closely related to the prognosis of patients with H. pylori (-) GC. The seven-mRNA signature was identified to act as an independent prognostic biomarker by stratified analysis and multivariate Cox regression analysis. It was also validated on two test groups from TCGA and GSE15460 and shown that patients with high-risk scores based on the expression of the seven mRNAs had significantly shorter survival times compared to patients with low-risk scores (P < .0001). In this study, we developed a seven-mRNA signature related to G2/M checkpoint from H. pylori (-) GCs that as an independent biomarker potentially with a good performance in predicting OS and might be valuable for the clinical management for patients with GC.
Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/aislamiento & purificación , Interacciones Huésped-Patógeno/genética , Neoplasias Gástricas/patología , Femenino , Perfilación de la Expresión Génica , Infecciones por Helicobacter/virología , Humanos , Masculino , ARN Neoplásico/análisis , ARN Neoplásico/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/virologíaRESUMEN
BACKGROUND: The grain yield of cereals is determined by the synergistic interaction between source activity and sink capacity. However, source-sink interactions are far from being fully understood. Therefore, a field experiment was performed in wheat to investigate the responses of flag leaves and grains to sink/source manipulations. RESULTS: Half-degraining delayed but partial defoliation enhanced leaf senescence. Sink/source manipulations influenced the content of reactive oxygen species in the flag leaf and the concentration of phytohormones, including cytokinins, indoleacetic 3-acid and jasmonic acid, in the flag leaves (LDef) and grains (GDef) in defoliated plants and flag leaves (LDG) and grain (GDG) in de-grained plants. Isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis indicated that at 16 days after manipulation, a total of 97 and 59 differentially expressed proteins (DEPs) from various functional categories were observed in the LDG and LDef groups, respectively, compared with the control, and 115 and 121 DEPs were observed in the GDG and GDef groups, respectively. The gene ontology annotation terms of the DEPs mainly included carbon fixation, hydrogen peroxide catabolic process, chloroplast and cytoplasm, oxidoreductase activity and glutamate synthase activity in the flag leaves of manipulated plants and organonitrogen compound metabolic process, cytoplasm, vacuolar membrane, CoA carboxylase activity, starch synthase activity and nutrient reservoir activity in the grains of manipulated plants. KEGG pathway enrichment analysis revealed that photosynthesis, carbon, nitrogen and pyruvate metabolism and glycolysis/gluconeogenesis were the processes most affected by sink/source manipulations. Sink/source manipulations affected the activities of amylase and proteinases and, ultimately, changed the mass per grain. CONCLUSIONS: Manipulations to change the sink/source ratio affect hormone levels; hydrolytic enzyme activities; metabolism of carbon, nitrogen and other main compounds; stress resistance; and leaf senescence and thus influence grain mass.
Asunto(s)
Grano Comestible/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Envejecimiento/metabolismo , Grano Comestible/metabolismo , Redes y Vías Metabólicas , Microscopía Electrónica de Transmisión , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Proteómica , Triticum/metabolismo , Triticum/ultraestructuraRESUMEN
BACKGROUND: Ovarian cancer is the leading cause of death in gynecological cancer. Cancer stem cells (CSCs) contribute to the occurrence, progression and resistance. Small nucleolar RNAs (SnoRNAs), a class of small molecule non-coding RNA, involve in the cancer cell stemness and tumorigenesis. METHODS: In this study, we screened out SNORNAs related to ovarian patient's prognosis by analyzing the data of 379 cases of ovarian cancer patients in the TCGA database, and analyzed the difference of SNORNAs expression between OVCAR-3 (OV) sphere-forming (OS) cells and OV cells. After overexpression or knockdown SNORD89, the expression of Nanog, CD44, and CD133 was measured by qRT-PCR or flow cytometry analysis in OV, CAOV-3 (CA) and OS cells, respectively. CCK-8 assays, plate clone formation assay and soft agar colony formation assay were carried out to evaluate the changes of cell proliferation and self-renewal ability. Scratch migration assay and trans-well invasion analysis were used for assessing the changes of migration and invasion ability. RESULTS: High expression of SNORD89 indicates the poor prognosis of ovarian cancer patients and was associated with patients' age, therapy outcome. SNORD89 highly expressed in ovarian cancer stem cells. The overexpression of SNORD89 resulted in the increased stemness markers, S phase cell cycle, cell proliferation, invasion and migration ability in OV and CA cells. Conversely, these phenomena were reversed after SNORD89 silencing in OS cells. Further, we found that SNORD89 could upregulate c-Myc and Notch1 expression in mRNA and protein levels. SNORD89 deteriorates the prognosis of ovarian cancer patients by regulating Notch1-c-Myc pathway to promote cell stemness and acts as an oncogene in ovarian tumorigenesis. Consequently, SNORD89 can be a novel prognostic biomarker and therapeutic target for ovarian cancer.
Asunto(s)
Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Nucleolar Pequeño/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Fenotipo , Pronóstico , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Nucleolar Pequeño/genéticaRESUMEN
BACKGROUND: Triple negative breast cancer (TNBC) is a specific subtype of breast cancer with a poor prognosis due to its aggressive biological behaviour and lack of therapeutic targets. We aimed to explore some novel genes and pathways related to TNBC prognosis through bioinformatics methods as well as potential initiation and progression mechanisms. METHODS: Breast cancer mRNA data were obtained from The Cancer Genome Atlas database (TCGA). Differential expression analysis of cancer and adjacent cancer, as well as, triple negative breast cancer and non-triple negative breast cancer were performed using R software. The key genes related to the pathogenesis were identified by functional and pathway enrichment analysis and protein-protein interaction network analysis. Based on univariate and multivariate Cox proportional hazards model analyses, a gene signature was established to predict overall survival. Receiver operating characteristic curve was used to evaluate the prognostic performance of our model. RESULTS: Based on mRNA expression profiling of breast cancer patients from the TCGA database, 755 differentially expressed overlapping mRNAs were detected between TNBC/non-TNBC samples and normal tissue. We found eight hub genes associated with the cell cycle pathway highly expressed in TNBC. Additionally, a novel six-gene (TMEM252, PRB2, SMCO1, IVL, SMR3B and COL9A3) signature from the 755 differentially expressed mRNAs was constructed and significantly associated with prognosis as an independent prognostic signature. TNBC patients with high-risk scores based on the expression of the 6-mRNAs had significantly shorter survival times compared to patients with low-risk scores (P < 0.0001). CONCLUSIONS: The eight hub genes we identified might be tightly correlated with TNBC pathogenesis. The 6-mRNA signature established might act as an independent biomarker with a potentially good performance in predicting overall survival.
RESUMEN
Photosynthesis in non-foliar organs plays an important role in crop growth and productivity, and it has received considerable research attention in recent years. However, compared with the capability of photosynthetic CO2 fixation in leaves, the distinct attributes of photosynthesis in the non-foliar organs of wheat (a C3 species) are unclear. This review presents a comprehensive examination of the photosynthetic characteristics of non-foliar organs in wheat. Compared with leaves, non-foliar organs had a higher capacity to refix respired CO2 , higher tolerance to environmental stresses and slower terminal senescence after anthesis. Additionally, whether C4 photosynthetic metabolism exists in the non-foliar organs of wheat is discussed, as is the advantage of photosynthesis in non-foliar organs during times of abiotic stress. Introducing the photosynthesis-related genes of C4 plants into wheat, which are specifically expressed in non-foliar organs, can be a promising approach for improving wheat productivity.
Asunto(s)
Grano Comestible/metabolismo , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo , Triticum/metabolismoRESUMEN
Studies of protein evolution have focused on amino acid substitutions with much less systematic analysis on insertion and deletions (indels) in protein coding genes. We hence surveyed 7,500 genes between Drosophila melanogaster and D. simulans, using D. yakuba as an outgroup for this purpose. The evolutionary rate of coding indels is indeed low, at only 3% of that of nonsynonymous substitutions. As coding indels follow a geometric distribution in size and tend to fall in low-complexity regions of proteins, it is unclear whether selection or mutation underlies this low rate. To resolve the issue, we collected genomic sequences from an isogenic African line of D. melanogaster (ZS30) at a high coverage of 70× and analyzed indel polymorphism between ZS30 and the reference genome. In comparing polymorphism and divergence, we found that the divergence to polymorphism ratio (i.e., fixation index) for smaller indels (size ≤ 10 bp) is very similar to that for synonymous changes, suggesting that most of the within-species polymorphism and between-species divergence for indels are selectively neutral. Interestingly, deletions of larger sizes (size ≥ 11 bp and ≤ 30 bp) have a much higher fixation index than synonymous mutations and 44.4% of fixed middle-sized deletions are estimated to be adaptive. To our surprise, this pattern is not found for insertions. Protein indel evolution appear to be in a dynamic flux of neutrally driven expansion (insertions) together with adaptive-driven contraction (deletions), and these observations provide important insights for understanding the fitness of new mutations as well as the evolutionary driving forces for genomic evolution in Drosophila species.
Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Genes de Insecto , Mutación INDEL , Sistemas de Lectura Abierta/genética , Sustitución de Aminoácidos , Animales , Drosophila/clasificación , Drosophila/genética , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Aptitud Genética , Variación Genética , Genoma de los Insectos , Datos de Secuencia Molecular , Filogenia , Alineación de SecuenciaRESUMEN
INTRODUCTION: Poly-ADP-ribose polymerase inhibitors (PARPis) have emerged as a new class of therapeutic agents for breast cancer patients with breast cancer susceptibility gene (BRCA) mutations. However, the efficacy and toxicity of PARPis have not been clearly established. METHODS: This study comprehensively evaluated the efficacy and safety of PARPis in patients with BRCA-mutated breast cancer. Online databases were systematically searched, and six clinical trials were included. The primary endpoint of efficacy was progression-free survival (PFS), whereas the secondary endpoints were overall survival (OS) and objective response rate (ORR). Additionally, we assessed the safety of PARPis. RESULTS: The results of the meta-analysis showed that PARPis can effectively improve the PFS and OS in patients compared with the control group. The pooled HR (PARPi vs control groups) was 0.63 (95% CI, 0.55 - 0.73) and 0.83 (95% CI, 0.73 to -0.95) for PFS and OS, respectively. In safety, PARPis demonstrated controllable adverse reactions. There were no significant differences in overall AEs or grade ≥3 AEs between the PARP inhibitor and control arms. CONCLUSIONS: Our results confirm the efficacy and safety of PARPis in patients with BRCA-mutated breast cancer, and more specifically clarify the efficacy of PARPis alone or in combination with other chemotherapy drugs. [Figure: see text].
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Belowground bacterial communities play essential roles in maintaining ecosystem multifunction, while our understanding of how and why their distribution patterns and community compositions may change with the distinct pedogenetic conditions of different soil types is still limited. Here, we evaluated the roles of soil physiochemical properties and biotic interactions in driving belowground bacterial community composition across three typical zonal soil types, including black calcium soil (QS), typical black soil (HL) and dark brown soil (BQL), with distinct pedogenesis on the Northeast China Plain. Changes in soil bacterial diversity and community composition in these three zonal soil types were strongly correlated with soil pedogenetic features. SOC concentrations in HL were higher than in QS and BQL, but bacterial diversity was low, and the network structure revealed greater stability and connectivity. The composition of the bacterial community correlated significantly with soil pH in QS but with soil texture in BQL. The bacterial co-occurrence network of HL had higher density and clustering coefficients but lower edges, and different keystone species of networks were also detected. This work provides a basic understanding of the driving mechanisms responsible for belowground bacterial biodiversity and distribution patterns over different pedogenetic conditions in agroecosystems.
Asunto(s)
Biodiversidad , Ecosistema , Calcio de la Dieta , China , SueloRESUMEN
Background: To investigate the clinical characteristics of Addison's disease caused by adrenal tuberculosis in Tibet. After the anti-tuberculosis treatment, the clinical features between continuous glucocorticoid therapy and glucocorticoid withdrawal were analyzed. Methods: Clinical data of patients with Addison's disease caused by adrenal tuberculosis diagnosed in The People's Hospital of Tibet Autonomous Region from January 2015 to October 2021 were collected and analyzed. All patients were taking anti-tuberculosis and glucocorticoids replacement therapy, and the root cause of the disease was analyzed following prognosis observations. Results: There were 25 patients (24 Tibetan and 1 Han patient) with Addison's disease caused by adrenal tuberculosis, including 18 males and 7 females. A total of 21 cases were followed up successfully, of which 13 cases discontinued anti-tuberculosis drugs successfully, 6 cases discontinued glucocorticoid therapy among the rest, 6 cases continued anti-tuberculosis + glucocorticoid replacement therapy, and 2 cases died. Conclusion: Early diagnosis and proper anti-tuberculosis treatment can improve the prognosis of patients with adrenal tuberculosis. Moreover, screening and educating Tibetan people regarding the potential risk and adversities of adrenal tuberculosis is crucial for eradicating the disease.
RESUMEN
OBJECTIVE: To explore the association between parental genetic polymorphism of methylenetetrahydrofolate reductase (MTHFR) 677C/T and occurrence of nonsyndromic cleft lip with or without cleft palate (NSCL/P) in offspring in Shandong Province. METHODS: MTHFR genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Parents of 89 NSCL/P patients treated at Qilu Hospital from August, 2006 to August, 2008 and those of 64 healthy children were recruited in this case-control study. RESULTS: Frequencies of T and C alleles in mothers of patients and healthy children were 65.73% and 46.09%, and 34.27% and 53.91%, respectively (Chi-square=13.663, P<0.01). Offspring whose mothers had T alleles were 2.243 times more likely to develop NSCL/P (95%CI: 1.408-3.572). Frequencies of T and C alleles in fathers of patients and healthy children were 62.92% and 55.47%, and 37.08% and 44.53%, respectively (Chi-square=2.222, P>0.05). The chance for parents of the patient and control groups to bear an affected fetus carrying homozygous mutations were 43% and 29%, respectively (P>0.05). CONCLUSION: In Shandong Province, maternal genotype for the MTHFR 677C/T polymorphism has a significant impact on the occurrence of NSCL/P in their offspring, whilst paternal genotype for this polymorphism may not be a risk factor for NSCL/P in their offspring.
Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Alelos , Estudios de Casos y Controles , Niño , Femenino , Genotipo , Homocigoto , Humanos , Masculino , Polimorfismo GenéticoRESUMEN
[This corrects the article DOI: 10.3389/fcell.2020.583087.].
RESUMEN
Hypoxic tumor microenvironment (TME) plays critical roles in induction of cancer stem cell-like phenotype in breast cancer and contribute to chemoresistance. However, the mechanism underlying stemness reprogramming of breast cancer cells (BCs) by hypoxic TME remains largely unknown. In the present study, we illustrated that HIF-2α, but not HIF-1α, induces stemness in BCs under hypoxia through SOD2-mtROS-PDI/GRP78-UPRER pathway, linking mitochondrial metabolic state to endoplasmic reticulum (ER) response via mitochondrial reactive oxygen species (mtROS) level. HIF-2α activates endoplasmic reticulum unfolded protein response (UPRER) in drug-sensitive MCF7 and T47D cells to induce drug-resistant stem-like phenotype. Genetic depletion or pharmacological inhibition (YQ-0629) of HIF-2α abolished hypoxia-induced stem-like phenotype in vitro and in vivo. Mechanistically, HIF-2α activates transcription of superoxide dismutase 2 (SOD2) under hypoxia and thereby decreases mtROS level. With less mtROS transported to endoplasmic reticulum, the expression and activity of protein disulfide isomerase (PDI) is suppressed, allowing glucose-regulated protein 78 (GRP78) to dissociate from receptor proteins of UPRER and bind misfolded protein to activate UPRER, which eventually confer chemoresistance and stem-like properties to BCs. Moreover, the increase in mtROS and PDI levels caused by HIF-2α knockdown and the subsequent UPRER inhibition could be substantially rescued by mitoTEMPOL (a mtROS scavenger), 16F16 (a PDI inhibitor), or GRP78 overexpression. Overall, we reported the critical roles of HIF-2α-SOD2-mtROS-PDI/GRP78-UPRER axis in mediating hypoxia-induced stemness in BCs, highlighting the interaction between organelles and providing evidence for further development of targeted HIF-2α inhibitor as a promising therapeutic strategy for chemoresistant breast cancer.
Asunto(s)
Neoplasias , Superóxidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteína Disulfuro Isomerasas , Superóxido DismutasaRESUMEN
The phenotypic switch in tumor-associated macrophages (TAMs) mediates immunity escape of cancer. However, the underlying mechanisms in the TAM phenotypic switch have not been systematically elucidated. In this study, long noncoding RNA (lncRNA)-Xist, CCAAT/enhancer-binding protein (C/EBP)α, and Kruppel-like factor 6 (KLF6) were upregulated, whereas microRNA (miR)-101 was downregulated in M1 macrophages-type (M1). Knockdown of Xist or overexpression of miR-101 in M1 could induce M1-to-M2 macrophage-type (M2) conversion to promote cell proliferation and migration of breast and ovarian cancer by inhibiting C/EBPα and KLF6 expression. Furthermore, miR-101 could combine with both Xist and C/EBPα and KLF6 through the same microRNA response element (MRE) predicted by bioinformatics and verified by luciferase reporter assays. Moreover, we found that miR-101 knockdown restored the decreased M1 marker and the increased M2 marker expression and also reversed the promotion of proliferation and migration of human breast cancer cells (MCF-7) and human ovarian cancer (OV) cells caused by silencing Xist. Generally, the present study indicates that Xist could mediate macrophage polarization to affect cell proliferation and migration of breast and ovarian cancer by competing with miR-101 to regulate C/EBPα and KLF6 expression. The promotion of Xist expression in M1 macrophages and inhibition of miR-101 expression in M2 macrophages might play an important role in inhibiting breast and ovarian tumor proliferation and migration abilities.
RESUMEN
Drug resistance is a major obstacle in the treatment of tumors, which easily lead to relapse or poor prognosis. Cancer stem cells (CSCs) are regarded as one of the important targets that mediate tumor resistance. Increasing evidence shows that the tumor hypoxia microenvironment is closely related to the resistance of CSCs to chemotherapy and radiotherapy. In this review, we intend to review the articles that have described how the hypoxic microenvironment affects CSC stemness and mediates tumor resistance and provide new directions and methods in the clinical treatment of tumors. Here, we also discuss the feasibility and development prospects of using hypoxia-inducible factors (HIFs) that regulate the hypoxic microenvironment of tumors as targeted agents to treat tumors, as well as to reduce or even reverse the resistance of tumors to chemotherapy and radiotherapy.