Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(4): 5043-5055, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439241

RESUMEN

The optical fiber distributed strain sensor based on the optical frequency domain reflectometer (OFDR) preserves its dominant position in short-distance measurement fields with high spatial resolution, such as biomedical treatment, soft robot, etc. However, owing to the weak intensity of the Rayleigh backscattered signal (RBS) in the single-mode fiber (SMF) and complex computation, the large strain changes cannot be precisely and rapidly demodulated by the traditional cross-correlation method. In this work, the OFDR with backscattering enhanced optical fiber (BEOF) is proposed and demonstrated for fast and large strain measurement. By enhancing the RBS amplitude, the signal-to-noise ratio (SNR) is improved, resulting in a higher similarity between the reference signal and test signal, which is beneficial for the expansion of the strain measurement range. Moreover, the adaptive local feature extraction and matching (ALFEM) algorithm is presented and demonstrated, which replaces the traditional cross-correlation method for strain demodulation and fast measurement. On account of the enhancement ratio of BEOF, the dominant characteristic data segment can be extracted from whole wavelength data. In the experiments, the enhancing ratio of BEOF is designed as 10, resulting in the spatial resolution reaches 400µm and the strain measurement range is greatly increased to 4800µÉ›. Further, the effectiveness of the ALFEM algorithm has been verified, in which the strain demodulation time is approximately 25% of that of the traditional method. This scheme fully exploits the enhancement characteristic of the BEOF and is also applicable to the systems based on other types of BEOF, different strain changes and sensing distances.

2.
Sensors (Basel) ; 19(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817736

RESUMEN

Phase-drift elimination is crucial to vibration recovery in the coherent detection phase-sensitive optical time domain reflectometry system. The phase drift drives the whole phase signal fluctuation as a baseline, and its negative effect is obvious when the detection time is long. In this paper, empirical mode decomposition (EMD) is presented to extract and eliminate the phase drift adaptively. It decomposes the signal by utilizing the characteristic time scale of the data, and the baseline is eventually obtained. It is validated by theory and experiment that the phase drift deteriorates seriously when the length of the vibration region increases. In an experiment, the phase drift was eliminated under the conditions of different vibration frequencies of 1 Hz, 5 Hz, and 10 Hz. The phase drift was also eliminated with different vibration intensities. Furthermore, the linear relationship between phase and vibration intensity is demonstrated with a correlation coefficient of 99.99%. The vibrations at 0.5 Hz and 0.3 Hz were detected with signal-to-noise ratios (SNRs) of 55.58 dB and 64.44 dB. With this method, when the vibration frequency is at the level of Hz or sub-Hz, the phase drift can be eliminated. This contributes to the detection and recovery of low-frequency perturbation events in practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA