Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Transplant ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059585

RESUMEN

Bile duct regeneration is hypothesized to prevent biliary strictures, a leading cause of morbidity after liver transplantation. Assessing the capacity for biliary regeneration may identify grafts as suitable for transplantation that are currently declined, but this has been unfeasible until now. This study used long-term ex situ normothermic machine perfusion (LT-NMP) to assess biliary regeneration. Human livers that were declined for transplantation were perfused at 36 °C for up to 13.5 days. Bile duct biopsies, bile, and perfusate were collected throughout perfusion, which were examined for features of injury and regeneration. Biliary regeneration was defined as new Ki-67-positive biliary epithelium following severe injury. Ten livers were perfused for a median duration of 7.5 days. Severe bile duct injury occurred in all grafts, and biliary regeneration occurred in 70% of grafts. Traditional biomarkers of biliary viability such as bile glucose improved during perfusion but this was not associated with biliary regeneration (P > .05). In contrast, the maintenance of interleukin-6 and vascular endothelial growth factor-A levels in bile was associated with biliary regeneration (P = .017 for both cytokines). This is the first study to demonstrate biliary regeneration during LT-NMP and identify a cytokine signature in bile as a novel biomarker for biliary regeneration during LT-NMP.

2.
Artif Organs ; 48(5): 472-483, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38132848

RESUMEN

BACKGROUND: Ex situ machine perfusion facilitates the assessment of livers prior to transplantation. However, currently available markers of liver function poorly predict long-term graft function. Indocyanine green (ICG) is a liver-specific dye which, although common in vivo, has never been comprehensively evaluated for the assessment of graft quality during ex situ machine perfusion. This study aimed to assess the utility of ICG in the ex situ setting. METHODS: Using a customized long-term perfusion system, human livers that were not suitable for transplantation were perfused using a red cell-based perfusate. ICG was delivered into the perfusate on days 0, 1, and 4 to assess ICG clearance (spectrophotometric absorbance at 805 nm) and ICG fluorescence (near-infrared camera). RESULTS: Sixteen partial livers were perfused for a median duration of 172 h (7.2 days). On day 0, the median ICG perfusate disappearance rate (PDR) was 7.5%/min and the median ICG retention at 15 min was 9.9%. Grafts that survived ≥7 days had a significantly higher median ICG PDR on day 0 (14.5%/min vs. 6.5%/min, p = 0.005) but not on days 1 or 4. ICG perfusion demonstrated that long-surviving grafts had a significantly lower median red-value (89.8 vs. 118.6, p = 0.011) and a significantly lower median blue-value (12.9 vs. 22.6, p = 0.045) than short-surviving grafts. CONCLUSION: ICG is a novel marker for the assessment of liver function during ex situ normothermic machine perfusion. ICG PDR and quantitative ICG perfusion can distinguish between long- and short-surviving grafts and demonstrate the utility of ICG in the assessment of graft quality prior to transplant.


Asunto(s)
Verde de Indocianina , Trasplante de Hígado , Humanos , Trasplante de Hígado/efectos adversos , Hígado/cirugía , Perfusión , Preservación de Órganos
3.
Artif Organs ; 48(9): 1008-1017, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38528752

RESUMEN

BACKGROUND: Normothermic machine perfusion (NMP) allows for the assessment and resuscitation of ex-vivo human livers prior to transplantation. Commercially available NMP systems are closed circuits that accumulate metabolic waste and cytokines over time, potentially limiting organ preservation times. Dialysis has been proposed as a method to remove waste and excess fluid from such systems. This study aimed to demonstrate the utility of integrating dialysis into a commercially available system by quantifying solute removal. METHODS: A dialysis filter was attached in parallel to a commercially available liver perfusion system. Three livers declined for transplantation were split before undergoing long-term NMP with blood using the modified system. During perfusion, dialysate flow rates were set in the range of 100-600 mL/h for short periods of time. At each flow rate, perfusate and spent dialysate samples were collected and analyzed for solute clearance. RESULTS: The addition of dialysis to a commercial NMP system removed water-soluble waste and helped regulate electrolyte concentrations. Interleukin-6 was successfully removed from the perfusate. Solute clearance was proportional to dialysate flow rate. A guide for our perfusion setup was created for the appropriate selection of dialysis flow rates and duration based on real-time perfusate composition. CONCLUSIONS: Dialysis circuits can efficiently remove waste and regulate perfusate composition, and can be easily incorporated to improve the performance of commercially available systems. Quantification of the effect of dialysis on perfusate composition enables refined dialysis control to optimize electrolyte profiles and avoid the over- or under-correction of key solutes.


Asunto(s)
Hígado , Preservación de Órganos , Perfusión , Diálisis Renal , Humanos , Perfusión/métodos , Perfusión/instrumentación , Preservación de Órganos/métodos , Preservación de Órganos/instrumentación , Diálisis Renal/instrumentación , Diálisis Renal/métodos , Hígado/irrigación sanguínea , Trasplante de Hígado/métodos , Masculino , Soluciones para Diálisis/química , Persona de Mediana Edad , Femenino
4.
Nat Commun ; 15(1): 1876, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485924

RESUMEN

Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in an ex situ normothermic perfusion system to evaluate a set of fourteen natural and bioengineered adeno-associated viral (AAV) vectors directly in human liver, in the presence and absence of neutralizing human sera. Under non-neutralizing conditions, the recently developed AAV variants, AAV-SYD12 and AAV-LK03, emerged as the most functional variants in terms of cellular uptake and transgene expression. However, when assessed in the presence of human plasma containing anti-AAV neutralizing antibodies (NAbs), vectors of human origin, specifically those derived from AAV2/AAV3b, were extensively neutralized, whereas AAV8- derived variants performed efficiently. This study demonstrates the potential of using normothermic liver perfusion as a model for early-stage testing of liver-focused gene therapies. The results offer preliminary insights that could help inform the development of more effective translational strategies.


Asunto(s)
Dependovirus , Vectores Genéticos , Humanos , Vectores Genéticos/genética , Dependovirus/genética , Anticuerpos Neutralizantes , Hígado , Perfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA