Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Environ Manage ; 366: 121727, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008923

RESUMEN

Determining hazardous substances in the environment is vital to maintaining the safety and health of all components of society, including the ecosystem and humans. Recently, protein-based nanobiosensors have emerged as effective tools for monitoring potentially hazardous substances in situ. Nanobiosensor detection mode is a combination of particular plasmonic nanomaterials (e.g., nanoparticles, nanotubes, quantum dots, etc.), and specific bioreceptors (e.g., aptamers, antibodies, DNA, etc.), which has the benefits of high selectivity, sensitivity, and compatibility with biological systems. The role of these nanobiosensors in identifying dangerous substances (e.g., heavy metals, organic pollutants, pathogens, toxins, etc.) is discussed along with different detection mechanisms and various transduction methods (e.g., electrical, optical, mechanical, electrochemical, etc.). In addition, topics discussed include the design and construction of these sensors, the selection of proteins, the integration of nanoparticles, and their development processes. A discussion of the challenges and prospects of this technology is also included. As a result, protein nanobiosensors are introduced as a powerful tool for monitoring and improving environmental quality and community safety.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente , Sustancias Peligrosas , Sustancias Peligrosas/análisis , Monitoreo del Ambiente/métodos , Proteínas/análisis , Nanoestructuras , Nanotecnología , Nanopartículas/química
2.
Environ Res ; 218: 114908, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442521

RESUMEN

Trace amounts of semi-volatile organic compounds (SVOCs) of the two isothiazolinones of 2-methylisothiazol-3(2H)-one (MIT) and 2-octyl-4-isothiazolin-3-one (OIT) were detected both in the air and on glass surfaces. Equilibria of SVOCs between air and glass were examined by solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS). Surface to air distribution ratios of Ksa for MIT and OIT were determined to be 5.10 m and 281.74 m, respectively, suggesting more abundant MIT in the gas phase by a factor of ∼55. In addition, a facile method of silver nanocube (AgNC)-assisted surface-enhanced Raman scattering (SERS) has been developed for the rapid and sensitive detection of MIT and OIT on glass surfaces. According to MIT and OIT concentration-correlated SERS intensities of Raman peaks at ∼1585 cm-1 and ∼1125 cm-1, respectively. Their calibration curves have been obtained in the concentration ranges between 10-3 to 10-10 M and 10-3 to 10-11 M with their linearity of 0.9986 and 0.9989 for MIT and OIT, respectively. The limits of detection (LODs) of the two isothiazolinones were estimated at 10-10 M, and 10-11 M for MIT and OIT, respectively. Our results indicate that AgNC-assisted SERS spectra are a rapid and high-ultrasensitive method for the quantification of MIT and OIT in practical applications. The development of analytical methods and determination of the Ksa value obtained in this study can be applied to the prediction of the exposure to MIT and OIT from various chemical products and dynamic behaviors to assess human health risks in indoor environments.


Asunto(s)
Espectrometría Raman , Compuestos Orgánicos Volátiles , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis , Límite de Detección
3.
J Environ Manage ; 348: 119259, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827077

RESUMEN

Composites of magnetic biochar derived from spent coffee grounds were prepared using MoS2 decorated by plasmonic silver nanoparticles (MoS2-Ag), which were used for the bioremediation Cr6+ ions. The composites were characterized by electron microscopy, X-ray diffraction, Raman, and UV-VIS spectroscopy. The bioremediation of Cr6+ ions was enhanced almost two times compared to microalgae, Spirulina maxima. Such an increased activity is attributed to heterojunction formation of Biochar@MoS2-Ag composite due to the synergetic effects of surface plasmon resonance of AgNPs inducing amplified local electric field, thus simultaneously increasing the absorption of MoS2 under visible or near-infrared light. The combination of Biochar@MoS2-Ag and Spirulina maxima powder was effective for the separation (microalga-based absorption and accumulation of Cr6+ ions) of photo-induced carriers (composite-assisted to breakdown Cr6+ ions). This study offers efficient eco-friendly treatment of Cr6+ ions by reporting the first enhanced bioremediation of Cr(VI) ions by microalgae using MoS2-Ag-modified biochar obtained from consumed coffee grounds.


Asunto(s)
Nanopartículas del Metal , Microalgas , Molibdeno , Café , Biodegradación Ambiental , Plata/química , Fenómenos Magnéticos , Iones
4.
Sensors (Basel) ; 19(6)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889914

RESUMEN

This work presents a surface-enhanced Raman scattering (SERS) and density functional theory (DFT) study of a fipronil adsorbed on colloidal silver nanoparticles (AgNPs). A standard curve was established to quantify fipronil within a range of 0.0001⁻0.1 ppm (r² ≥ 0.985), relying on the unique fipronil Raman shift at ~2236 cm-1 adsorbed on AgNPs. DFT calculations suggest that the nitrile moiety (C≡N) binding should be slightly more favorable, by 1.92 kcal/mol, than those of the nitrogen atom of the pyrazole in fipronil and Ag6 atom clusters. The characteristic peaks of the SERS spectrum were identified, and both the calculated vibrational wavenumbers and the Raman intensity pattern were considered. The vibrational spectra of fipronil were obtained from the potential energy distribution (PED) analysis and selective Raman band enhancement.

5.
Angew Chem Int Ed Engl ; 58(9): 2710-2714, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30600872

RESUMEN

Multiple sharp-edged gold nanostars were efficiently assembled on nanopipette tips through electrostatic interactions for use as a potent intracellular hypoxia-sensing Raman probe. Colloidal stability and surface immobilization were checked using scanning electron microscopy, light scattering, and zeta potential measurements. Site-specific intracellular hypoxia levels can be estimated in vitro and in vivo using Raman lancets (RL). Distinct Raman spectral changes for the nitro-(NO2 ) functional group of the redox marker 4-nitrothiophenol (4NTP) can be quantified according to the intracellular oxygen (O2 ) content, ranging from 1 % to 10 %. Redox potential changes in mitochondrial respiration were also examined through serial injections of inhibitors. 3D-cultured cells and in vivo tests were used to validate our method, and its application in the assessment of the aggressiveness of cancer cells by differentiating spectral changes between malignant and benign cells was demonstrated.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Hipoxia de la Célula , Sondas Moleculares/química , Nanopartículas/química , Oxígeno/análisis , Análisis de la Célula Individual , Animales , Células Cultivadas , Femenino , Humanos , Inyecciones Subcutáneas , Ratones , Sondas Moleculares/administración & dosificación , Imagen Óptica , Oxidación-Reducción , Tamaño de la Partícula , Espectrometría Raman , Propiedades de Superficie
6.
Luminescence ; 32(4): 549-554, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27730739

RESUMEN

We report a combined approach that introduces the use of 4-aminobenzo-15-crown-5 (4AB15C5) for the detection of ferric(III) ions by colorimetric, ultraviolet (UV)-visible light absorption, fluorescence, and live-cell imaging techniques along with density functional theory (DFT) calculations. We have found that 4AB15C5 is sensitive and selective for binding ferric(III) ions in aqueous solutions. DFT calculations using the polarizable continuum model have been used to explain the strong binding of the ferric ion by 4AB15C5 in aqueous solutions. The detection limit in the fluorescence quenching measurements was found to be as low as 50 µM for the ferric ion with a determined Stern-Volmer constant of 1.52 × 104  M-1 . Fluorescence intensity did not change for other ions tested, Fe2+ , Co2+ , Mn2+ , Mg2+ , Zn2+ , Ca2+ , NH4+ , Na+ , and K+ ions. Live-cell fluorescence imaging was also used to check the intracellular variations in ferric ion levels. Our spectroscopic data indicated that 4AB15C5 can bind ferric ions selectively in aqueous solutions.


Asunto(s)
Compuestos de Anilina/metabolismo , Compuestos Corona/metabolismo , Hierro/análisis , Hierro/metabolismo , Sustancias Luminiscentes/química , Compuestos de Anilina/química , Cationes/metabolismo , Compuestos Corona/química , Fluorescencia , Células HeLa , Humanos , Hierro/química , Límite de Detección , Sustancias Luminiscentes/metabolismo , Mediciones Luminiscentes , Microscopía Fluorescente , Imagen Molecular/métodos , Sensibilidad y Especificidad , Soluciones , Espectrofotometría Ultravioleta , Agua/química
7.
Sensors (Basel) ; 17(11)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29140287

RESUMEN

A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm-1 to ~1504 cm-1 on AuNPs at a high concentration of Cu2+ above 1 µM. The other ions of Zn2+, Pb2+, Ni2+, NH4⁺, Mn2+, Mg2+, K⁺, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

8.
Sensors (Basel) ; 16(11)2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27792178

RESUMEN

A facile, selective, and sensitive detection method for the Cu2+ ions in environmental and biological solutions has been newly developed by observing the unique CN stretching peaks at ~2108 cm-1 upon the dissociative adsorption of glycine (GLY) in hydrazine buffer on gold nanoparticles (AuNPs). The relative abundance of Cu species on AuNPs was identified from X-ray photoelectron spectroscopy analysis. UV-Vis spectra also indicated that the Au particles aggregated to result in the color change owing to the destabilization induced by the GLY-Cu2+ complex. The CN stretching band at ~2108 cm-1 could be observed to indicate the formation of the CN species from GLY on the hydrazine-covered AuNP surfaces. The other ions of Fe3+, Fe2+, Hg2+, Mg2+, Mn2+, Ni2+, Zn2+, Cr3+, Co2+, Cd2+, Pb2+, Ca2+, NH4⁺, Na⁺, and K⁺ at high concentrations of 50 µM did not produce such spectral changes. The detection limit based on the CN band for the determination of the Cu2+ ion could be estimated to be as low as 500 nM in distilled water and 1 µM in river water, respectively. We attempted to apply our method to estimate intracellular ion detection in cancer cells for more practical purposes.

9.
Sensors (Basel) ; 15(5): 10088-99, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25938200

RESUMEN

Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

10.
Environ Pollut ; 341: 122878, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967713

RESUMEN

The emergence of algal toxins in water ecosystems poses a significant ecological and human health concern. These toxins, produced by various algal species, can lead to harmful algal blooms, and have far-reaching consequences on biodiversity, food chains, and water quality. This review explores the types and sources of algal toxins, their ecological impacts, and the associated human health risks. Additionally, the review delves into the potential of bioremediation strategies to mitigate the effects of algal toxins. It discusses the role of microorganisms, enzymes, and algal-bacterial interactions in toxin removal, along with engineering approaches such as advanced oxidation processes and adsorbent utilization. Microbes and enzymes have been studied for their environmentally friendly and biocompatible properties, which make them useful for controlling or removing harmful algae and their toxins. The challenges and limitations of bioremediation are examined, along with case studies highlighting successful toxin control efforts. Finally, the review outlines future prospects, emerging technologies, and the need for continued research to effectively address the complex issue of algal toxins and their ecological significance.


Asunto(s)
Ecosistema , Floraciones de Algas Nocivas , Humanos , Biodegradación Ambiental , Calidad del Agua
11.
Environ Pollut ; 317: 120775, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455771

RESUMEN

A sensitive and stable substrate plays a vital role in the Raman spectroscopic techniques as an analytical method for detecting pesticides effectively from the environment. Enhancing signals from nanoparticles are weak and inconsistent in repeatability since analytes tend to degrade quickly under laser exposure. Herein, a novel substrate of Au@ZIF-67 is prepared on octahedral AuNPs by trapping pesticide molecules with small three-dimensional volumes by the flexibility of ZIF-67 for rapid detection with high sensitivity and stability. The two types of thiram and carbendazim pesticides, which are environmental pollutants that affect biodiversity, were successfully absorbed in Au@ZIF-67 nanostructures by adsorption-desorption equilibrium for analytical purposes in Raman spectroscopy. Spectra calculations of the thiram and carbendazim molecules on 8 atoms of Au using DFT were compared with the experimental data. The SERS enhancement factors for thiram and carbendazim were estimated to be 1.91 × 108 and 3.12 × 108, respectively, with the LOD values of trace amounts of ∼10-10 mol L-1. The novel substrate of Au@ZIF-67 is a propitious platform for detecting thiram and carbendazim in trace amounts, providing a helpful strategy for detecting residues with high performance in the environment at the laboratory and practical scales.


Asunto(s)
Contaminantes Ambientales , Nanopartículas del Metal , Plaguicidas , Plaguicidas/análisis , Tiram/química , Contaminantes Ambientales/análisis , Oro/química , Nanopartículas del Metal/química , Espectrometría Raman/métodos
12.
Small Methods ; 7(3): e2201257, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683199

RESUMEN

A potential application of spiky SiO2 nanoparticles (NPs) with tubular and rough surfaces is investigated as superhydrophobic coatings, for their unique transparent, fluorinate-free, and environmentally friendly properties. This study demonstrates a facile method for the successful fabrication of superhydrophobic coatings and SiO2 @polydimethylsiloxane (PDMS) using spiky SiO2 NPs, N-coordinated boroxines, and PDMS. Combined with spray coating technology, this method of superhydrophobic coating can be simply applied to both hydrophilic and hydrophobic surfaces, including wood, fabric, glass, metal, sponge, and paper. The nanocomposite coating on the glass surface showed both excellent superhydrophobicity and high transparency, with a contact angle of 165.4 ± 1.0° and 96.93% transmittance at 550 nm, respectively. SiO2 @PDMS-modified glass substrate is found to be resilient to UV irradiation, water, and high temperature treatments at ambient conditions. Experimental data demonstrated that the simple but effective combination of N-boroxine-PDMS and spiky SiO2 NPs produces a layered coating material that exhibits many good integrated surface properties, including stability, transparency, superhydrophobicity, and oil-water separation.

13.
Chemosphere ; 330: 138668, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37060959

RESUMEN

An investigation was conducted into the dynamic behavior of two polyaromatic hydrocarbon (PAH) semi-volatile organic compound (SVOC) naphthalene (NAP) and benzo [ghi]perylene (BghiP) in air and on various surfaces including glass, dust, and polyurethane foam (PUF) to understand their interaction with different media. A confocal fluorescence microscope and an infrared microscope were employed to detect and monitor the concentration-, time-, and temperature-dependent changes of the aromatic NAP and BghiP species on the surfaces. Infrared two-dimensional mapping of the vibrational characteristic peaks was used to track the two PAHs on the surfaces. Gas chromatography-mass spectrometry (GC-MS) was employed to measure the gaseous concentrations. The sorption of NAP and BghiP on the surfaces was estimated using Arizona desert sand fine (ISO 12103-1 A2) dust and organic contaminant household (SRM 2585) dust. The surface-to-air partition coefficients of NAP and BghiP were estimated on the different surfaces of glass, dust, and PUF. Molecular dynamic simulations were performed on dust surfaces based on the Hatcher model to understand the behavior of NAP and BghiP on dust surfaces. The Weschler-Nazaroff model was introduced to predictPAH film accumulation on the surfaces, providing a better understanding of PAH interaction with different environmental media. These findings could contribute to developing effective strategies to mitigate the adverse impact of PAHs on the environment and human health.


Asunto(s)
Polvo , Hidrocarburos Policíclicos Aromáticos , Humanos , Polvo/análisis , Poliuretanos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente
14.
Environ Pollut ; 325: 121441, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921660

RESUMEN

A unique nanomaterial platform was developed for trace detection and efficient degradation of triclosan (TCS). A facile spectroscopic technique for surface-enhanced Raman scattering (SERS)-supported identification and ultraviolet (UV) degradation of TCS using a SERS template based on silver spherical nanoparticle (AgNP)-modified ZnO multipods (ZnO@Ag) is reported. Core-shell composite materials of ZnO multipods with a dimension of around 3 µm and AgNPs with an average diameter of ∼27 nm was designed not only as a substrate for TCS degradation up to ∼92% upon UV irradiation (λ = 365 mm, 300 µW/cm2) but also as a monitoring platform sensitive to TCS at a detection limit as low as 10-9 M (≈0.3 ppb). Herein, the first investigation into ZnO@Ag bimetallic composites is established for both the SERS-based detection and UV-assisted degradation of environmental TCS pollutants. The calibration curve was estimated to be linear at R2 > 0.97. The validated technology was successfully used to determine the antibacterial agent and TCS in distilled or river water. The advantages of the ZnO@Ag template are highlighted over conventional detection and excellent degradation.


Asunto(s)
Contaminantes Ambientales , Nanopartículas del Metal , Nanocompuestos , Triclosán , Óxido de Zinc , Nanopartículas del Metal/química , Óxido de Zinc/química , Plata/química , Nanocompuestos/química
15.
J Nanostructure Chem ; 12(5): 865-888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757049

RESUMEN

Micro(nano)plastic (MNP) pollutants have not only impacted human health directly, but are also associated with numerous chemical contaminants that increase toxicity in the natural environment. Most recent research about increasing plastic pollutants in natural environments have focused on the toxic effects of MNPs in water, the atmosphere, and soil. The methodologies of MNP identification have been extensively developed for actual applications, but they still require further study, including on-site detection. This review article provides a comprehensive update on the facile detection of MNPs by Raman spectroscopy, which aims at early diagnosis of potential risks and human health impacts. In particular, Raman imaging and nanostructure-enhanced Raman scattering have emerged as effective analytical technologies for identifying MNPs in an environment. Here, the authors give an update on the latest advances in plasmonic nanostructured materials-assisted SERS substrates utilized for the detection of MNP particles present in environmental samples. Moreover, this work describes different plasmonic materials-including pure noble metal nanostructured materials and hybrid nanomaterials-that have been used to fabricate and develop SERS platforms to obtain the identifying MNP particles at low concentrations. Plasmonic nanostructure-enhanced materials consisting of pure noble metals and hybrid nanomaterials can significantly enhance the surface-enhanced Raman scattering (SERS) spectra signals of pollutant analytes due to their localized hot spots. This concise topical review also provides updates on recent developments and trends in MNP detection by means of SERS using a variety of unique materials, along with three-dimensional (3D) SERS substrates, nanopipettes, and microfluidic chips. A novel material-assisted spectral Raman technique and its effective application are also introduced for selective monitoring and trace detection of MNPs in indoor and outdoor environments.

16.
Nanomaterials (Basel) ; 11(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34685057

RESUMEN

Facile detection of indoor semi-volatile organic compounds (SVOCs) is a critical issue to raise an increasing concern to current researchers, since their emissions have impacted the health of humans, who spend much of their time indoors after the recent incessant COVID-19 pandemic outbreaks. Plasmonic nanomaterial platforms can utilize an electromagnetic field to induce significant Raman signal enhancements of vibrational spectra of pollutant molecules from localized hotspots. Surface-enhanced Raman scattering (SERS) sensing based on functional plasmonic nanostructures has currently emerged as a powerful analytical technique, which is widely adopted for the ultra-sensitive detection of SVOC molecules, including phthalates and polycyclic aromatic hydrocarbons (PAHs) from household chemicals in indoor environments. This concise topical review gives updated recent developments and trends in optical sensors of surface plasmon resonance (SPR) and SERS for effective sensing of SVOCs by functionalization of noble metal nanostructures. Specific features of plasmonic nanomaterials utilized in sensors are evaluated comparatively, including their various sizes and shapes. Novel aptasensors-assisted SERS technology and its potential application are also introduced for selective sensing. The current challenges and perspectives on SERS-based optical sensors using plasmonic nanomaterial platforms and aptasensors are discussed for applying indoor SVOC detection.

17.
J Hazard Mater ; 402: 123499, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739725

RESUMEN

We prepared novel Raman substrates for the sensitive detection of submicron-sized plastic spheres in water. Anisotropic nanostar dimer-embedded nanopore substrates were prepared for the efficient identification of submicron-sized plastic spheres by providing internal hot spots of electromagnetic field enhancements at the tips of nanoparticles. Silver-coated gold nanostars (AuNSs@Ag) were inserted into anodized aluminum oxide (AAO) nanopores for enhanced microplastic (MP) detection. We found that surface-enhanced Raman scattering (SERS) substrates of AuNSs@Ag@AAO yielded stronger signals at the same weight percentages for polystyrene MP particles with diameters as small as 0.4 µm, whereas such behaviors could not be observed for larger MPs (diameters of 0.8 µm, 2.3 µm, and 4.8 µm). The detection limit of the submicrometer-sized 0.4 µm in our Raman measurements were estimated to be 0.005% (∼0.05 mg/g =50 ppm) along with a fast detection time of only a few min without any sample pretreatments. Our nano-sized dimensional matching substrates may provide a useful tool for the application of SERS substrates for submicrometer MP pollutants in water.

18.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641158

RESUMEN

This work introduces a facile geometry-controlled method for the fabrication of embossed and engraved polymeric moth-eye-inspired nanostructures in imprinting molds using anodic aluminum oxide (AAO) templates, resulting in a novel anti-reflective transparent coating. The moth-eye nanostructures are prepared directly on the surface of a flexible polyethylene terephthalate (PET) substrate. As a prerequisite procedure, a UV-curable polyurethane acrylate resin is spun on the PET. The shape of the moth-eye nanostructures can then be adjusted by controlling the size and shape of the nanopores in the AAO templates. Both embossed and concaved polymer moth-eye nanostructures were successfully mounted on a PET substrate. Embossed polymer replica molds were prepared using the AAO master templates in combination with an imprinting process. As revealed by field-emission electron microscope (FE-SEM) images, conical nanopatterns in the AAO template with a diameter of ~90 nm and a depth of ~100 nm, create a homogeneous embossed morphology in the polymer moth-eye nanostructure. The polymeric molds with the depths of 300 and 500 nm revealed the amalgamated structures in their apexes. In addition, a dip-imprinting process of the polymeric layers was implemented to yield a concaved mold by assembly on the surface of the 100 nm embossed polymer mold substrate. Considering that the embossed structures may be crumbled due to their protuberant shapes, the concaved geometries can have an advantage of stability in a certain application concerning physical degradation along with a higher transmission by ~2%, despite somewhat nonuniform structure. The experimental and theoretical results of this study indicate that this polymer layer has the potential for use in anti-reflective coating applications in transparent films.

19.
J Mater Chem B ; 8(2): 186-198, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31808756

RESUMEN

We provide an updated overview of gold nanomaterials (AuNMs) widely used in bioimaging in combination with various kinds of Raman spectral markers mainly in cancer cells and tumours. Assisted by the plasmonic properties of AuNMs, enhanced Raman spectroscopy in aqueous samples has recently emerged as a versatile analytical technique, widely used for the determination and recognition of sensitive and selective information on a molecular complex in a physiological environment. The intensified vibrational spectra of a molecule that occur on the surfaces of AuNMs are often referred to as either "Raman spectral markers" or "fingerprints" of molecular species, probes, and labels. This review evaluates the kinds and specific features of AuNMs and Raman reporter molecules utilized in cancer bioimaging. These include the recent development of various size- and shape-controlled AuNMs for the optimization of plasmonic properties in combination with Raman spectral markers. Another section covers organic Raman dyes for bioimaging of cancer cells. The final part covers the aspects of the current challenges and perspectives on AuNM-based multimodal bioimaging, drug delivery-related biomonitoring, and cancer diagnosis. One of the main purposes is to develop rationally designed Raman dyes for cancer cell imaging.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Oro/química , Nanoestructuras/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Espectrometría Raman/métodos , Animales , Antineoplásicos/administración & dosificación , Línea Celular , Humanos , Ratones
20.
Colloids Surf B Biointerfaces ; 171: 49-57, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30005290

RESUMEN

Zidovudine (AZT) adsorbed on colloidal gold nanoparticles (AuNPs) undergoes pH-induced conformational changes according to spectral changes in surface-enhanced Raman scattering (SERS). In acidic pH values conditions, AZT assumes the C(2')-endo conformer, which binds more weakly to AuNPs than under neutral and alkaline conditions. In this study, density functional theory (DFT) calculations were performed; these calculations also supported the conformation-dependent binding energies. A lactobionic acid-conjugated PEGylated (LA-PEG-SH; molecular weight: 3400) unit was attached to AuNPs to target the asialoglycoprotein receptors overexpressed in hepatocarcinoma cells of Huh7 and SNU-354. The loading efficiency values were measured to be ∼44-49% and ∼66-68% at pH values of 7 and 10, respectively. At an acidic pH of 4.5, they were estimated to be only ∼35-38%. pH-dependent spectral changes were observed for the asymmetric stretching modes of the azide (NNN) bands at 2183 cm-1 (in acidic pH) and at 2129 cm-1 (in basic pH). Cell viability analysis indicated that the LA-PEG-capped, AZT-coated AuNPs specifically inhibited the growth of the targeted hepatocarcinoma cells with better cancer cell killing efficiency than was observed with the LA-PEG-capped AuNPs without AZT.


Asunto(s)
Disacáridos/química , Liberación de Fármacos , Oro Coloide/química , Polietilenglicoles/química , Espectrometría Raman , Zidovudina/química , Adsorción , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Disacáridos/farmacología , Oro Coloide/farmacología , Humanos , Concentración de Iones de Hidrógeno , Conformación Molecular , Tamaño de la Partícula , Polietilenglicoles/farmacología , Teoría Cuántica , Propiedades de Superficie , Zidovudina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA