Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Mater ; 23(2): 196-204, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191634

RESUMEN

The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.

2.
Chem Rev ; 123(18): 10990-11046, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37672768

RESUMEN

Two-dimensional (2D) ferroics, namely ferroelectric, ferromagnetic, and ferroelastic materials, are attracting rising interest due to their fascinating physical properties and promising functional applications. A variety of 2D ferroic phases, as well as 2D multiferroics and the novel 2D ferrovalleytronics/ferrotoroidics, have been recently predicted by theory, even down to the single atomic layers. Meanwhile, some of them have already been experimentally verified. In addition to the intrinsic 2D ferroics, appropriate stacking, doping, and defects can also artificially regulate the ferroic phases of 2D materials. Correspondingly, ferroic ordering in 2D materials exhibits enormous potential for future high density memory devices, energy conversion devices, and sensing devices, among other applications. In this paper, the recent research progresses on 2D ferroic phases are comprehensively reviewed, with emphasis on chemistry and structural origin of the ferroic properties. In addition, the promising applications of the 2D ferroics for information storage, optoelectronics, and sensing are also briefly discussed. Finally, we envisioned a few possible pathways for the future 2D ferroics research and development. This comprehensive overview on the 2D ferroic phases can provide an atlas for this field and facilitate further exploration of the intriguing new materials and physical phenomena, which will generate tremendous impact on future functional materials and devices.

3.
Nano Lett ; 23(4): 1379-1385, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36763496

RESUMEN

Low temperature and high humidity conditions significantly degrade the performance of solid-state lubricants consisting of van der Waals (vdW) atomic layers, owing to the liquid water layer attached/intercalated to the vdW layers, which greatly enhances the interlayer friction. However, using low temperature in situ atomic force microscopy (AFM) and friction force microscopy (FFM), we unveil the unexpected ultralow friction between two-dimensional (2D) ice, a solid phase of water confined to the 2D space, and the 2D molybdenum disulfides (MoS2). The friction of MoS2 and 2D ice is reduced by more than 30% as compared to bare MoS2 and the rigid surface. The phase transition of liquid water into 2D ice under mechanical compression has also been observed. These new findings can be applied as novel frictionless water/ice transport technology in nanofluidic systems and promising high performance lubricants for operating in low temperature and high humidity environments.

4.
Angew Chem Int Ed Engl ; 62(4): e202216008, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36399056

RESUMEN

The direct utilization of metal-organic frameworks (MOFs) for electrocatalytic oxygen evolution reaction (OER) has attracted increasing interests. Herein, we employ the low-dose integrated differential phase contrast-scanning transmission electron microscopy (iDPC-STEM) technique to visualize the atomic structure of multivariate MOFs (MTV-MOFs) for guiding the structural design of bulk MOFs for efficient OER. The iDPC-STEM images revealed that incorporating Fe3+ or 2-aminoterephthalate (ATA) into Ni-BDC (BDC: benzenedicarboxylate) can introduce inhomogeneous lattice strain that weaken the coordination bonds, which can be selectively cleaved via a mild heat treatment to simultaneously generate coordinatively unsaturated metal sites, conductive Ni@C and hierarchical porous structure. Thus, excellent OER activity with current densities of 10 and 100 mA cm-2 are achieved over the defective MOFs at small overpotentials of 286 mV and 365 mV, respectively, which is superior to the commercial RuO2 catalyst and most of the bulk MOFs.

5.
Acc Chem Res ; 54(22): 4191-4202, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34719231

RESUMEN

ConspectusTwo-dimensional (2D) transition-metal dichalcogenides (TMDs) are a class of promising low-dimensional materials with a variety of emergent properties which are attractive for next-generation electronic and optical devices; such properties include tunable band gaps, high electron mobilities, high exciton binding energies, excellent thermal stability and flexibility. During the synthesis process of these materials, especially chemical vapor deposition, defects such as grain boundaries (GBs) inevitably exist. GBs are the interfaces between differently oriented grains and are line defects in 2D crystals. While GBs can degrade the overall quality of 2D materials and adversely affect some of their electrical and mechanical properties, recent results show that GBs give rise to or enhance a wide range of unique electrical, mechanical, and chemical properties of the GBs in 2D TMDs. The effects of GBs on 2D material properties are complex and diverse, providing exciting opportunities to realize new functionalities by manipulating the local structure and properties. Notably, these effects are strongly related to atom types, dislocation cores, crystal misorientation at GBs, and both in- and out-of-plane deformation. The exploitation of GBs for novel applications requires a deepened understanding of synthesis, postprocessing, defect structures, GB properties, and GB structure-property relationships in 2D materials.In this Account, we first introduce a detailed classification of GBs in 2D TMDs based on atomic structure, symmetry, and the local coordination of both transition metals and chalcogenide atoms. The GB types in typical MoS2 (high-symmetry hexagonal structure) and ReS2 (low-symmetry monoclinic structure) are taken as examples. Next, we describe the properties of GBs in 2D TMDs, including thermodynamic and kinetic, mechanical, thermal, electrical, magnetic, chemical, and electrocatalysis properties as well as several application areas where these may be exploited. Here we provide systematic atomic-level and electronic level explanations of these properties to clarify their dependences on GB structures. Applications that extend from these properties, including functional electronics, chemical sensors, and electrocatalysts, are also described. Finally, we provide several perspectives and suggest promising opportunities for exploiting the novel properties of GBs in 2D TMDs. We expect that this Account will further stimulate the fundamental research of GBs and boost the wide application of multifunctional devices.

6.
Nano Lett ; 20(11): 8420-8425, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33104360

RESUMEN

Achieving two-dimensionally (2D) ordered surface wrinkle patterns is still challenging not only for the atomic-thick 2D materials but also in general for all soft surfaces. Normally disordered 2D wrinkle patterns on isotropic surfaces can be rendered via biaxial straining. Here, we report that the 1D and 2D ordered wrinkle patterns in 2D materials can be produced by sequential wrinkling controlled by thermal straining and vertical spatial confinement. The various hierarchical patterns in 2D materials generated by our method are highly periodic, and the hexagonal crystal symmetry is obeyed. More interestingly, these patterns can be maintained in suspended monolayers after delamination from the underlying surfaces which shows the great application potentials. Our new approach can simplify the patterning processes on 2D layered materials and reduce the risk of damage compared to conventional lithography methods, and numerous engineering applications that require nanoscale ordered surface texturing could be empowered.

7.
J Am Chem Soc ; 142(30): 13130-13135, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32614184

RESUMEN

It remains difficult to control the morphology of two-dimensional (2D) materials via direct chemical vapor deposition (CVD) growth. In particular, off-equilibrium (kinetic) growth may produce flakes with non-Wulff shapes (e.g., high-index edges, symmetrical shapes, etc.), which are potentially useful; however, a general controllable approach for the kinetic growth of 2D materials is currently lacking. In this work, we pushed the CVD growth of 2D MoS2 into deep kinetic regime, by using potassium chloride (KCl) as catalyst and plasma pretreatment on growth substrates. The unprecedented nonequilibrium high-index faceting and unusual high-symmetry shapes in 2D materials have been realized. The growth mechanism of high-index facets is rationalized based on the theory of kinetic instability on crystal surfaces. This new vapor-liquid-adatom-solid (VLAS) growth mechanism-synergistic capture of multiple vapor phase molecules by the catalyst particles on corners and the oversaturated adatom diffusion along adjacent edges can offer great opportunities for shape engineering on 2D materials. The high-quality, rapid, and controllable synthesis of high-index facets (edges) and other non-Wulff shapes of 2D transition metal dichalcogenides will benefit the developments in 2D materials.

8.
Phys Rev Lett ; 125(24): 246102, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412019

RESUMEN

The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS_{2}) using in situ aberration corrected scanning transmission electron microscopy (STEM). Our real time observations of atomic configurations and corresponding strain fields in propagating cracks directly reveal the atomistic fracture mechanisms. The entirely brittle fracture with non-blunted crack tips as well as perfect healing of cracks have been observed. The mode I fracture toughness of 2D ReS_{2} is measured. Our experiments have bridged the linear elastic deformation zone and the ultimate nm-sized nonlinear deformation zone inside the crack tip. The dynamics of fracture has been explained by the atomic lattice trapping model. The direct visualization on the strain field in the ongoing crack tips and the gained insights of discrete bond breaking or healing in cracks will facilitate deeper insights into how atoms are able to withstand exceptionally large strains at the crack tips.

9.
Small ; 13(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27748996

RESUMEN

Defects in bulk crystals can be classified into vacancies, interstitials, grain boundaries, stacking faults, dislocations, and so forth. In particular, the vacancy in semiconductors is a primary defect that governs electrical transport. Concentration of vacancies depends mainly on the growth conditions. Individual vacancies instead of aggregated vacancies are usually energetically more favorable at room temperature because of the entropy contribution. This phenomenon is not guaranteed in van der Waals 2D materials due to the reduced dimensionality (reduced entropy). Here, it is reported that the 1D connected/aggregated vacancies are energetically stable at room temperature. Transmission electron microscopy observations demonstrate the preferential alignment direction of the vacancy chains varies in different 2D crystals: MoS2 and WS2 prefer 〈2¯11〉 direction, while MoTe2 prefers 〈1¯10〉 direction. This difference is mainly caused by the different strain effect near the chalcogen vacancies. Black phosphorous also exhibits directional double-chain vacancies along 〈01〉 direction. Density functional theory calculations predict that the chain vacancies act as extended gap (conductive) states. The observation of the chain vacancies in 2D crystals directly explains the origin of n-type behavior in MoTe2 devices in recent experiments and offers new opportunities for electronic structure engineering with various 2D materials.

10.
Nanotechnology ; 28(36): 36LT01, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28686170

RESUMEN

Synthesis of monolayer transition metal dichalcogenides (TMDs) via chemical vapor deposition relies on several factors such as precursor, promoter, substrate, and surface treatment of substrate. Among them, the use of promoter is crucial for obtaining uniform and large-area monolayer TMDs. Although promoters have been speculated to enhance adhesion of precursors to the substrate, their precise role in the growth mechanism has rarely been discussed. Here, we report the role of alkali metal promoter in growing monolayer TMDs. The growth occurred via the formation of sodium metal oxides which prevent the evaporation of metal precursor. Furthermore, the silicon oxide substrate helped to decrease the Gibbs free energy by forming sodium silicon oxide compounds. The resulting sodium metal oxide was anchored within such concavities created by corrosion of silicon oxide. Consequently, the wettability of the precursors to silicon oxide was improved, leading to enhance lateral growth of monolayer TMDs.

11.
Nano Lett ; 16(12): 7807-7813, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960496

RESUMEN

Dislocations are one-dimensional line defects in three-dimensional crystals or periodic structures. It is common that the dislocation networks made of interactive dislocations be generated during plastic deformation. In van der Waals layered materials, the highly anisotropic nature facilitates the formation of such dislocation networks, which is critical for the friction or exfoliation behavior for these materials. By transmission electron microscopy analysis, we found the topological defects in such dislocation networks can be perfectly rationalized in the framework of traditional dislocation theory, which we applied the name "hyperdislocations". Due to the strong pinning effect of hyperdislocations, the state of exfoliation can be easily triggered by 1° twisting between two layers, which also explains the origin of disregistry and frictionlessness for all of the superlubricants that are widely used for friction reduction and wear protection.

12.
Nat Mater ; 12(5): 403-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23455851

RESUMEN

Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10(-13) A. The resulting devices exhibited an excellent on/off ratio of ~10(5), a high mobility of ~40 cm(2) V(-1) s(-1) and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.

13.
Small Methods ; : e2400211, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766949

RESUMEN

2D materials are intriguing due to their remarkably thin and flat structure. This unique configuration allows the majority of their constituent atoms to be accessible on the surface, facilitating easier electron tunneling while generating weak surface forces. To decipher the subtle signals inherent in these materials, the application of techniques that offer atomic resolution (horizontal) and sub-Angstrom (z-height vertical) sensitivity is crucial. Scanning probe microscopy (SPM) emerges as the quintessential tool in this regard, owing to its atomic-level spatial precision, ability to detect unitary charges, responsiveness to pico-newton-scale forces, and capability to discern pico-ampere currents. Furthermore, the versatility of SPM to operate under varying environmental conditions, such as different temperatures and in the presence of various gases or liquids, opens up the possibility of studying the stability and reactivity of 2D materials in situ. The characteristic flatness, surface accessibility, ultra-thinness, and weak signal strengths of 2D materials align perfectly with the capabilities of SPM technologies, enabling researchers to uncover the nuanced behaviors and properties of these advanced materials at the nanoscale and even the atomic scale.

14.
ACS Nano ; 18(18): 11573-11597, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38655635

RESUMEN

The growth of two-dimensional (2D) materials through chemical vapor deposition (CVD) has sparked a growing interest among both the industrial and academic communities. The interest stems from several key advantages associated with CVD, including high yield, high quality, and high tunability. In order to harness the application potentials of 2D materials, it is often necessary to transfer them from their growth substrates to their desired target substrates. However, conventional transfer methods introduce contamination that can adversely affect the quality and properties of the transferred 2D materials, thus limiting their overall application performance. This review presents a comprehensive summary of the current clean transfer methods for 2D materials with a specific focus on the understanding of interaction between supporting layers and 2D materials. The review encompasses various aspects, including clean transfer methods, post-transfer cleaning techniques, and cleanliness assessment. Furthermore, it analyzes and compares the advances and limitations of these clean transfer techniques. Finally, the review highlights the primary challenges associated with current clean transfer methods and provides an outlook on future prospects.

15.
Small Methods ; : e2400323, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940224

RESUMEN

The graphene oxide (GO) membrane displays promising potential in efficiently filtering ions from water. However, the precise mechanism behind its effectiveness remains elusive, particularly due to the lack of direct experimental evidence at the atomic scale. To shed light on this matter, state-of-the-art techniques are employed such as integrated differential phase contrast-scanning transmission electron microscopy and electron energy loss spectroscopy, combined with reverse osmosis (RO) filtration experiments using GO membranes. The atomic-scale observations after the RO experiments directly reveal the binding of various ions including Na+, K+, Ca2+, and Fe3+ to the defects, edges, and functional groups of GO. The remarkable ion-sieving capabilities of GO membranes are confirmed, which can be attributed to a synergistic interplay of size exclusion, electrostatic interactions, cation-π, and other non-covalent interactions. Moreover, GO membranes modified by external pressure and cation also demonstrated further enhanced filtration performance for filtration. This study significantly contributes by uncovering the atomic-scale mechanism responsible for ion sieving in GO membranes. These findings not only enhance the fundamental understanding but also hold substantial potential for the advancement of GO membranes in reverse osmosis (RO) filtration.

16.
Micron ; 185: 103678, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38941681

RESUMEN

The rich potential of two-dimensional materials endows them with superior properties suitable for a wide range of applications, thereby attracting substantial interest across various fields. The ongoing trend towards device miniaturization aligns with the development of materials at progressively smaller scales, aiming to achieve higher integration density in electronics. In the realm of nano-scaling ferroelectric phenomena, numerous new two-dimensional ferroelectric materials have been predicted theoretically and subsequently validated through experimental confirmation. However, the capabilities of conventional tools, such as electrical measurements, are limited in providing a comprehensive investigation into the intrinsic origins of ferroelectricity and its interactions with structural factors. These factors include stacking, doping, functionalization, and defects. Consequently, the progress of potential applications, such as high-density memory devices, energy conversion systems, sensing technologies, catalysis, and more, is impeded. In this paper, we present a review of recent research that employs advanced transmission electron microscopy (TEM) techniques for the direct visualization and analysis of ferroelectric domains, domain walls, and other crucial features at the atomic level within two-dimensional materials. We discuss the essential interplay between structural characteristics and ferroelectric properties on the nanoscale, which facilitates understanding of the complex relationships governing their behavior. By doing so, we aim to pave the way for future innovative applications in this field.

17.
Chempluschem ; : e202400320, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853751

RESUMEN

Multifluorinated aromatics serve as supramolecular synthons in the research of organic electro-optic (EO) materials by exploiting π-π stacking interaction between the aromatic hydrocarbon and multifluorinated aromatic groups for performance improvement. However, non-classical hydrogen bonding remains largely unexplored in fluorinated EO dendrimers. In this study, three Fréchet-type generation 1 benzyl ether co-dendrons were synthesized by replacing one benzyl group with 2,3,5,6-tetrafluorobenzyl (p-HF4Bz), pentafluorobenzyl (C6F5Bz), and 2,3,4,5-tetrafluorobenzyl (o-HF4Bz) groups, to afford the benzoic acid derivatives D1, D2, and D3, which were further bonded to the donor and π-bridge moieties to afford three co-dendronized push-pull phenyltetraene chromophores EOD1, EOD2, and EOD3, respectively. The weak C-H⋅⋅⋅X (X = O, F) interactions in the crystal structure of D1 cumulatively add to the benzoic acid dimers to form an extended hydrogen-bonded network, while D2 is crystallized into a centric one-dimensional chain with strong intermolecular interactions. The poled films of EOD1 with PMMA exhibited the largest and most stable EO activity with optical homogeneity among the series. The results identify the effectiveness of weak but favorable hydrogen bonds enabled by the enhanced carbon acidity of p-HF4Bz synthon in D1, over the interactions in D2 and D3, for the rational design of supramolecular EO dendrimers.

18.
ACS Appl Mater Interfaces ; 15(21): 25849-25859, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37200621

RESUMEN

Atmospheric water harvesting (AWH) is a possible solution for the current water crisis on the Earth, and the key process of AWH has been widely applied in commercial dehumidifiers. To improve the energy efficiency of the AWH process, applying a superhydrophobic surface to trigger coalescence-induced jumping could be a promising technique that has attracted extensive interest. While most previous studies focused on optimizing the geometric parameters such as nanoscale surface roughness (<1 µm) or microscale structures (10 µm to a few hundred µm range), which might enhance AWH, here, we report a simple and low-cost approach for superhydrophobic surface engineering, through alkaline oxidation of copper. The prepared medium-sized microflower structures (3-5 µm) by our method could fill the gap of the conventional nano- and microstructures, simultaneously act as the preferable nucleation sites and the promoter for the condensed droplet mobility including droplet coalescence and departure, and eventually benefit the entire AWH performances. Moreover, our AWH structure has been optimized with the aid of machine learning computer vision techniques for droplet dynamic analysis on a micrometer scale. Overall, the alkaline surface oxidation and medium-scale microstructures could provide excellent opportunities for superhydrophobic surfaces for future AWH.

19.
Nat Commun ; 14(1): 6462, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833368

RESUMEN

Surface amorphization provides electrocatalysts with more active sites and flexibility. However, there is still a lack of experimental observations and mechanistic explanations for the in situ amorphization process and its crucial role. Herein, we propose the concept that by in situ reconstructed amorphous surface, metal phosphorus trichalcogenides could intrinsically offer better catalytic performance for the alkaline hydrogen production. Trace Ru (0.81 wt.%) is doped into NiPS3 nanosheets for alkaline hydrogen production. Using in situ electrochemical transmission electron microscopy technique, we confirmed the amorphization process occurred on the edges of NiPS3 is critical for achieving superior activity. Comprehensive characterizations and theoretical calculations reveal Ru primarily stabilized at edges of NiPS3 through in situ formed amorphous layer containing bridging S22- species, which can effectively reduce the reaction energy barrier. This work emphasizes the critical role of in situ formed active layer and suggests its potential for optimizing catalytic activities of electrocatalysts.

20.
Adv Mater ; : e2304808, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505096

RESUMEN

Emerging non-noble metal 2D catalysts, such as molybdenum disulfide (MoS2 ), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post-treatment processes. Here, a novel salt-assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh-density vacancy-rich 2H-MoS2 , with a controllable sulfur vacancy density of up to 3.35 × 1014  cm-2 . This approach involves a pre-sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2 -K-H2 O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post-treatment methods. The vacancy-rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm-2 ) and a Tafel slope of 54.3 mV dec-1 in 0.5 m H2 SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt-assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA