Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomed Microdevices ; 26(1): 1, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008813

RESUMEN

One of the main challenges in improving the efficacy of conventional chemotherapeutic drugs is that they do not reach the cancer cells at sufficiently high doses while at the same time affecting healthy tissue and causing significant side effects and suffering in cancer patients. To overcome this deficiency, magnetic nanoparticles as transporter systems have emerged as a promising approach to achieve more specific tumour targeting. Drug-loaded magnetic nanoparticles can be directed to the target tissue by applying an external magnetic field. However, the magnetic forces exerted on the nanoparticles fall off rapidly with distance, making the tumour targeting challenging, even more so in the presence of flowing blood or interstitial fluid. We therefore present a computational model of the capturing of magnetic nanoparticles in a test setup: our model includes the flow around the tumour, the magnetic forces that guide the nanoparticles, and the transport within the tumour. We show how a model for the transport of magnetic nanoparticles in an external magnetic field can be integrated with a multiphase tumour model based on the theory of porous media. Our approach based on the underlying physical mechanisms can provide crucial insights into mechanisms that cannot be studied conclusively in experimental research alone. Such a computational model enables an efficient and systematic exploration of the nanoparticle design space, first in a controlled test setup and then in more complex in vivo scenarios. As an effective tool for minimising costly trial-and-error design methods, it expedites translation into clinical practice to improve therapeutic outcomes and limit adverse effects for cancer patients.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Modelos Teóricos , Simulación por Computador , Sistemas de Liberación de Medicamentos/métodos
2.
Appl Microbiol Biotechnol ; 107(10): 3329-3339, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060465

RESUMEN

Pandemics like SARS-Cov-2 very frequently have their origin in different animals and in particular herds of camels could be a source of zoonotic diseases. This study took advantage on a highly sensitive and adaptable method for the fast and reliable detection of viral antibodies in camels using low-cost equipment. Magnetic nanoparticles (MNP) have high variability in their functionalization with different peptides and proteins. We confirm that 3-aminopropyl triethoxysilane (APTES)-coated MNP could be functionalized with viral proteins. The protein loading could be confirmed by simple loading controls using FACS-analysis (p < 0.05). Complementary combination of antigen and antibody yields in a significant signal increase could be proven by both FACS and COMPASS. However, COMPASS needs only a few seconds for the measurement. In COMPASS, the phase φn on selected critical point of the fifth higher harmonic (n = 5th). Here, positive sera display highly significant signal increase over the control or negative sera. Furthermore, a clear distinction could be made in antibody detection as an immune response to closely related viruses (SARS-CoV2 and MERS). Using modified MNPs along with COMPASS offers a fast and reliable method that is less cost intensive than current technologies and offers the possibility to be quickly adapted in case of new occurring viral infections. KEY POINTS: • COMPASS (critical offset magnetic particle spectroscopy) allows the fast detection of antibodies. • Magnetic nanoparticles can be adapted by exchange of the linked bait molecule. • Antibodies could be detected in camel sera without washing steps within seconds.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Anticuerpos Antivirales , Camelus , ARN Viral , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2 , Análisis Espectral , Fenómenos Magnéticos
3.
Molecules ; 24(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315293

RESUMEN

Magnetic drug targeting utilizes an external magnetic field to target superparamagnetic iron oxide nanoparticles (SPIONs) and their cargo to the diseased vasculature regions. In the arteries, the flow conditions affect the behavior of magnetic particles and the efficacy of their accumulation. In order to estimate the magnetic capture of SPIONs in more physiological-like settings, we previously established an ex vivo model based on human umbilical cord arteries. The artery model was employed in our present studies in order to analyze the effects of the blood components on the efficacy of magnetic targeting, utilizing 2 types of SPIONs with different physicochemical characteristics. In the presence of freshly isolated human plasma or whole blood, a strong increase in iron content measured by AES was observed for both particle types along the artery wall, in parallel with clotting activation due to endogenous thrombin generation in plasma. Subsequent studies therefore utilized SPION suspensions in serum and washed red blood cells (RBCs) at hematocrit 50%. Interestingly, in contrast to cell culture medium suspensions, magnetic accumulation of circulating SPION-3 under the external magnet was achieved in the presence of RBCs. Taken together, our data shows that the presence of blood components affects, but does not prevent, the magnetic accumulation of circulating SPIONs.


Asunto(s)
Eritrocitos/química , Nanopartículas de Magnetita/análisis , Suero/química , Óxido Ferrosoférrico , Humanos , Fenómenos Magnéticos , Modelos Biológicos , Arterias Umbilicales/fisiología
4.
Immunogenetics ; 69(6): 401-407, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28364129

RESUMEN

The Scavenger Receptor Cysteine-Rich (SRCR) proteins are an archaic group of proteins characterized by the presence of multiple SRCR domains. They are membrane-bound or secreted proteins, which are generally related to host defense systems in animals. Deleted in Malignant Brain Tumors 1 (DMBT1) is a SRCR protein which is secreted in mucosal fluids and involved in host defense by pathogen binding by its SRCR domains. Genetic polymorphism within DMBT1 leads to DMBT1-alleles giving rise to polypeptides with interindividually different numbers of SRCR domains, ranging from 8 SRCR domains (encoded by 6 kb DMBT1 variant) to 13 SRCR domains (encoded by the 8 kb DMBT1 variant). In the present study, we have investigated whether reduction from 13 to 8 amino-terminal SRCR domains leads to reduction of bacterial binding. The 6 kb variant bound ~20-45% less bacteria compared to the 8 kb variant. These results support the hypothesis that genetic variation in DMBT1 may influence microbial defense.


Asunto(s)
Mutación de Línea Germinal , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Eliminación de Secuencia , Adhesión Bacteriana/genética , Proteínas de Unión al Calcio , Proteínas de Unión al ADN , Humanos , Polimorfismo Genético , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de Superficie Celular/química , Receptores Depuradores/química , Proteínas Supresoras de Tumor
5.
Int J Mol Sci ; 18(9)2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837060

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted great attention in many biomedical fields and are used in preclinical/experimental drug delivery, hyperthermia and medical imaging. In this study, biocompatible magnetite drug carriers, stabilized by a dextran shell, were developed to carry tissue plasminogen activator (tPA) for targeted thrombolysis under an external magnetic field. Different concentrations of active tPA were immobilized on carboxylated nanoparticles through carbodiimide-mediated amide bond formation. Evidence for successful functionalization of SPIONs with carboxyl groups was shown by Fourier transform infrared spectroscopy. Surface properties after tPA immobilization were altered as demonstrated by dynamic light scattering and ζ potential measurements. The enzyme activity of SPION-bound tPA was determined by digestion of fibrin-containing agarose gels and corresponded to about 74% of free tPA activity. Particles were stored for three weeks before a slight decrease in activity was observed. tPA-loaded SPIONs were navigated into thrombus-mimicking gels by external magnets, proving effective drug targeting without losing the protein. Furthermore, all synthesized types of nanoparticles were well tolerated in cell culture experiments with human umbilical vein endothelial cells, indicating their potential utility for future therapeutic applications in thromboembolic diseases.


Asunto(s)
Compuestos Férricos , Fibrinolíticos/administración & dosificación , Fibrinolíticos/síntesis química , Nanopartículas de Magnetita , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Tejido Plasminógeno/síntesis química , Dextranos/química , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Células Endoteliales , Compuestos Férricos/química , Fibrinólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
6.
Biochem Biophys Res Commun ; 468(3): 463-70, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26271592

RESUMEN

Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles.


Asunto(s)
Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/administración & dosificación , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/efectos de la radiación , Nanocápsulas/química , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/efectos de la radiación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/efectos de la radiación , Humanos , Campos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Nanocápsulas/administración & dosificación , Nanocápsulas/efectos de la radiación
7.
Int J Mol Sci ; 16(8): 19291-307, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26287178

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.


Asunto(s)
Ácidos Láuricos/química , Nanopartículas de Magnetita/química , Albúmina Sérica Bovina/química , Ultrafiltración/métodos , Animales , Bovinos , Coloides/química , Coloides/aislamiento & purificación , Humanos , Hipertermia Inducida , Células Jurkat , Ácidos Láuricos/aislamiento & purificación , Magnetismo , Albúmina Sérica Bovina/aislamiento & purificación , Propiedades de Superficie
8.
Int J Mol Sci ; 16(5): 9368-84, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25918940

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.


Asunto(s)
Materiales Biocompatibles/química , Almacenaje de Medicamentos , Compuestos Férricos/química , Nanopartículas de Magnetita/química , Nanotecnología/métodos , Albúminas/química , Supervivencia Celular/efectos de los fármacos , Coloides/química , Sistemas de Liberación de Medicamentos , Citometría de Flujo , Humanos , Hidrodinámica , Células Jurkat/efectos de los fármacos , Ácidos Láuricos/química , Linfoma de Células T/metabolismo , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Reproducibilidad de los Resultados , Temperatura , Difracción de Rayos X
9.
Molecules ; 20(10): 18016-30, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26437393

RESUMEN

Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT) employing superparamagnetic iron oxide nanoparticles (SPION) loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of nanomedicine from bench to bedside, nanoparticle-mediated effects have to be studied carefully. In this study, we compare the effect of SPION, unloaded or loaded with the cytotoxic drug mitoxantrone (MTO) with the effect of free MTO, on the viability and proliferation of HT-29 cells within three-dimensional multicellular tumor spheroids. Fluorescence microscopy and flow cytometry showed that both free MTO, as well as SPION-loaded MTO (SPION(MTO)) are able to penetrate into tumor spheroids and thereby kill tumor cells, whereas unloaded SPION did not affect cellular viability. Since SPION(MTO) has herewith proven its effectivity also in complex multicellular tumor structures with its surrounding microenvironment, we conclude that it is a promising candidate for further use in magnetic drug targeting in vivo.


Asunto(s)
Antineoplásicos/farmacología , Nanopartículas de Magnetita , Mitoxantrona/farmacología , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Mitoxantrona/administración & dosificación , Esferoides Celulares , Células Tumorales Cultivadas
10.
Int J Nanomedicine ; 19: 1645-1666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406599

RESUMEN

Purpose: In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods: The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results: Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion: Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.


Asunto(s)
Aterosclerosis , Compuestos Férricos , Ferrocianuros , Nanopartículas de Magnetita , Placa Aterosclerótica , Conejos , Ratas , Animales , Medios de Contraste/química , Placa Aterosclerótica/inducido químicamente , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Óxido Ferrosoférrico , Nanopartículas de Magnetita/química , Aterosclerosis/inducido químicamente , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Imagen por Resonancia Magnética/métodos
11.
Nanomedicine ; 9(7): 961-71, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23669367

RESUMEN

To treat tumours efficiently and spare normal tissues, targeted drug delivery is a promising alternative to conventional, systemic administered chemotherapy. Drug-carrying magnetic nanoparticles can be concentrated in tumours by external magnetic fields, preventing the nanomaterial from being cleared by metabolic burden before reaching the tumour. Therefore in Magnetic Drug Targeting (MDT) the favoured mode of application is believed to be intra-arterial. Here, we show that a simple yet versatile magnetic carrier-system (hydrodynamic particles diameter <200nm) accumulates the chemotherapeutic drug mitoxantrone efficiently in tumours. With MDT we observed the following drug accumulations relative to the recovery from all investigated tissues: tumour region: 57.2%, liver: 14.4%, kidneys: 15.2%. Systemic intra-venous application revealed different results: tumour region: 0.7%, liver: 14.4 % and kidneys: 77.8%. The therapeutic outcome was demonstrated by complete tumour remissions and a survival probability of 26.7% (P=0.0075). These results are confirming former pilot experiments and implying a milestone towards clinical studies. FROM THE CLINICAL EDITOR: This team of investigators studied drug carrying nanoparticles for magnetic drug targeting (MDT), demonstrating the importance of intra-arterial administration resulting in improved clinical outcomes in the studied animal model compared with intra-venous.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita/química , Mitoxantrona/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Femenino , Nanopartículas de Magnetita/ultraestructura , Mitoxantrona/química , Mitoxantrona/farmacología , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Neoplasias/patología , Tamaño de la Partícula , Conejos , Radiografía , Espectrofotometría Infrarroja , Distribución Tisular
12.
Int J Mol Sci ; 14(4): 7341-55, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23549268

RESUMEN

Magnetic drug targeting (MDT) improves the integrity of healthy tissues and cells during treatment with cytotoxic drugs. An anticancer drug is bound to superparamagnetic iron oxide nanoparticles (SPION), injected into the vascular supply of the tumor and directed into the tumor by means of an external magnetic field. In this study, we investigated the impact of SPION, mitoxantrone (MTO) and SPIONMTO on cell viability in vitro and the nonspecific uptake of MTO into circulating leukocytes in vivo. MDT was compared with conventional chemotherapy. MTO uptake and the impact on cell viability were assessed by flow cytometry in a Jurkat cell culture. In order to analyze MTO loading of circulating leukocytes in vivo, we treated tumor-bearing rabbits with MDT and conventional chemotherapy. In vitro experiments showed a dose-dependent MTO uptake and reduction in the viability and proliferation of Jurkat cells. MTO and SPIONMTO showed similar cytotoxic activity. Non-loaded SPION did not have any effect on cell viability in the concentrations tested. Compared with systemic administration in vivo, MDT employing SPIONMTO significantly decreased the chemotherapeutic load in circulating leukocytes. We demonstrated that MDT spares the immune system in comparison with conventional chemotherapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Citotoxinas , Sistemas de Liberación de Medicamentos/métodos , Leucocitos/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/química , Neoplasias Experimentales , Animales , Citotoxinas/química , Citotoxinas/farmacología , Femenino , Humanos , Células Jurkat , Leucocitos/patología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Conejos
13.
RSC Adv ; 13(23): 15730-15736, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37235104

RESUMEN

Magnetic particle imaging (MPI) is an imaging modality to quantitatively determine the three-dimensional distribution of magnetic nanoparticles (MNPs) administered as a tracer into a biological system. Magnetic particle spectroscopy (MPS) is the zero-dimensional MPI counterpart without spatial coding but with much higher sensitivity. Generally, MPS is employed to qualitatively evaluate the MPI capability of tracer systems from the measured specific harmonic spectra. Here, we investigated the correlation of three characteristic MPS parameters with the achievable MPI resolution from a recently introduced procedure based on a two-voxel-analysis of data taken from the system function acquisition that is mandatory in Lissajous scanning MPI. We evaluated nine different tracer systems and determined their MPI capability and resolution from MPS measurements and compared the results with MPI phantom measurements.

14.
Materials (Basel) ; 16(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37049199

RESUMEN

Pancreatic ductal adenocarcinoma is a hard-to-treat, deadly malignancy. Traditional treatments, such as surgery, radiation and chemotherapy, unfortunately are still not able to significantly improve long-term survival. Three-dimensional (3D) cell cultures might be a platform to study new drug types in a highly reproducible, resource-saving model within a relevant pathophysiological cellular microenvironment. We used a 3D culture of human pancreatic ductal adenocarcinoma cell lines to investigate a potential new treatment approach using superparamagnetic iron oxide nanoparticles (SPIONs) as a drug delivery system for mitoxantrone (MTO), a chemotherapeutic agent. We established a PaCa DD183 cell line and generated PANC-1SMAD4 (-/-) cells by using the CRISPR-Cas9 system, differing in a prognostically relevant mutation in the TGF-ß pathway. Afterwards, we formed spheroids using PaCa DD183, PANC-1 and PANC-1SMAD4 (-/-) cells, and analyzed the uptake and cytotoxic effect of free MTO and MTO-loaded SPIONs by microscopy and flow cytometry. MTO and SPION-MTO-induced cell death in all tumor spheroids in a dose-dependent manner. Interestingly, spheroids with a SMAD4 mutation showed an increased uptake of MTO and SPION-MTO, while at the same time being more resistant to the cytotoxic effects of the chemotherapeutic agents. MTO-loaded SPIONs, with their ability for magnetic drug targeting, could be a future approach for treating pancreatic ductal adenocarcinomas.

15.
Int J Nanomedicine ; 18: 3231-3246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37337577

RESUMEN

Purpose: Magnetic separation of microbes can be an effective tool for pathogen identification and diagnostic applications to reduce the time needed for sample preparation. After peptide functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with an appropriate interface, they can be used for the separation of sepsis-associated yeasts like Candida albicans. Due to their magnetic properties, the magnetic extraction of the particles in the presence of an external magnetic field ensures the accumulation of the targeted yeast. Materials and Methods: In this study, we used SPIONs coated with 3-aminopropyltriethoxysilane (APTES) and functionalized with a peptide originating from GP340 (SPION-APTES-Pep). For the first time, we investigate whether this system is suitable for the separation and enrichment of Candida albicans, we investigated its physicochemical properties and by thermogravimetric analysis we determined the amount of peptide on the SPIONs. Further, the toxicological profile was evaluated by recording cell cycle and DNA degradation. The separation efficiency was investigated using Candida albicans in different experimental settings, and regrowth experiments were carried out to show the use of SPION-APTES-Pep as a sample preparation method for the identification of fungal infections. Conclusion: SPION-APTES-Pep can magnetically remove more than 80% of the microorganism and with a high selective host-pathogen distinction Candida albicans from water-based media and about 55% in blood after 8 minutes processing without compromising effects on the cell cycle of human blood cells. Moreover, the separated fungal cells could be regrown without any restrictions.


Asunto(s)
Candida albicans , Nanopartículas Magnéticas de Óxido de Hierro , Proteínas y Péptidos Salivales , Humanos , Candida albicans/aislamiento & purificación , Fenómenos Magnéticos
16.
Int J Nanomedicine ; 18: 2071-2086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113796

RESUMEN

Introduction: One of the major challenges in the clinical translation of nanoparticles is the development of formulations combining favorable efficacy and optimal safety. In the past, iron oxide nanoparticles have been introduced as an alternative for gadolinium-containing contrast agents; however, candidates available at the time were not free from adverse effects. Methods: Following the development of a potent iron oxide-based contrast agent SPIONDex, we now performed a systematic comparison of this formulation with the conventional contrast agent ferucarbotran and with ferumoxytol, taking into consideration their physicochemical characteristics, bio- and hemocompatibility in vitro and in vivo, as well as their liver imaging properties in rats. Results: The results demonstrated superior in vitro cyto-, hemo- and immunocompatibility of SPIONDex in comparison to the other two formulations. Intravenous administration of ferucarbotran or ferumoxytol induced strong complement activation-related pseudoallergy in pigs. In contrast, SPIONDex did not elicit any hypersensitivity reactions in the experimental animals. In a rat model, comparable liver imaging properties, but a faster clearance was demonstrated for SPIONDex. Conclusion: The results indicate that SPIONDex possess an exceptional safety compared to the other two formulations, making them a promising candidate for further clinical translation.


Asunto(s)
Medios de Contraste , Nanopartículas de Magnetita , Ratas , Animales , Porcinos , Óxido Ferrosoférrico , Seguridad del Paciente , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/toxicidad
17.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615924

RESUMEN

Dextran-coated superparamagnetic iron oxide nanoparticles (SPIONDex) of various sizes can be used as contrast agents in magnetic resonance imaging (MRI) of different tissues, e.g., liver or atherosclerotic plaques, after intravenous injection. In previous studies, the blood compatibility and the absence of immunogenicity of SPIONDex was demonstrated. The investigation of the interference of SPIONDex with stimulated immune cell activation is the aim of this study. For this purpose, sterile and endotoxin-free SPIONDex with different hydrodynamic sizes (30 and 80 nm) were investigated for their effect on monocytes, dendritic cells (DC) and lymphocytes in concentrations up to 200 µg/mL, which would be administered for use as an imaging agent. The cells were analyzed using flow cytometry and brightfield microscopy. We found that SPIONDex were hardly taken up by THP-1 monocytes and did not reduce cell viability. In the presence of SPIONDex, the phagocytosis of zymosan and E. coli by THP-1 was dose-dependently reduced. SPIONDex neither induced the maturation of DCs nor interfered with their stimulated maturation. The particles did not induce lymphocyte proliferation or interfere with lymphocyte proliferation after stimulation. Since SPIONDex rapidly distribute via the blood circulation in vivo, high concentrations were only reached locally at the injection site immediately after application and only for a very limited time. Thus, SPIONDex can be considered immune compatible in doses required for use as an MRI contrast agent.

18.
Adv Mater ; 34(28): e2200653, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35595711

RESUMEN

A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days.


Asunto(s)
Hidrogeles , Andamios del Tejido , Endotelio , Hidrogeles/química , Microvasos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
19.
Ann Anat ; 242: 151909, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35189269

RESUMEN

BACKGROUND: The complex interplay of single wrist bones acting in combination with their ligamentous connections is still not fully understood. In this regard various theories exist, divisible in columnar and ring/row theories. The object of this study was to examine the mobility of the individual carpal bones as well as the ulna and metacarpals relative to each other in wrists of cadaveric hands using CT scans. METHODS: The regular wrist mobility of a total of 21 cadaveric hands was examined by CT imaging in neutral position, radial/ulnar abduction as well as wrist flexion and extension. The data were evaluated as 3D models by using a standardized global coordinate system and object coordinate systems. Rotation and translation of each carpal bone as well as radius/ulna and all metacarpal bones were evaluated. RESULTS: The principal motion took place in the carpus between the radius and the proximal carpal row followed by the midcarpal joint and the carpometacarpal joints and not mainly between the individual bones of a row. The scaphoid moves out of its row aggregate mainly during flexion and adapts to the motion of the distal carpal row. The trapezium and first metacarpal bones play a specific role detached from the remaining bones. CONCLUSIONS: With this study, a better understanding of the motion of the individual bones of the carpus, the metacarpals and the radius/ulna is shown. The study supports the row theory, where most motion takes place between the individual rows and not between the carpal bones, leaving the scaphoid and the first ray in a special role between the rows.


Asunto(s)
Huesos del Carpo , Muñeca , Fenómenos Biomecánicos , Huesos del Carpo/diagnóstico por imagen , Humanos , Tomografía Computarizada por Rayos X , Cúbito , Muñeca/diagnóstico por imagen
20.
Cancers (Basel) ; 14(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36497463

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) are used in nanomedicine as transporter systems for therapeutic cargos, or to magnetize cells to make them magnetically guidable. In cancer treatment, the site-directed delivery of chemotherapeutics or immune effector cells to the tumor can increase the therapeutic efficacy in the target region, and simultaneously reduce toxic side-effects in the rest of the body. To enable the transfer of new methods, such as the nanoparticle-mediated transport from bench to bedside, suitable experimental setups must be developed. In vivo, the SPIONs or SPION-loaded cells must be applied into the blood stream, to finally reach the tumor: consequently, targeting and treatment efficacy should be analyzed under conditions which are as close to in vivo as possible. Here, we established an in vitro method, including tumor spheroids placed in a chamber system under the influence of a magnetic field, and adapted to a peristaltic pump, to mimic the blood flow. This enabled us to analyze the magnetic capture and antitumor effects of magnetically targeted mitoxantrone and immune cells under dynamic conditions. We showed that the magnetic nanoparticle-mediated accumulation increased the anti-tumor effects, and reduced the unspecific distribution of both mitoxantrone and cells. Especially for nanomedical research, investigation of the site-specific targeting of particles, cells or drugs under circulation is important. We conclude that our in vitro setup improves the screening process of nanomedical candidates for cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA