Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 23(6): 1710-20, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19237502

RESUMEN

Calsequestrin-1 (CASQ1) is a moderate-affinity, high-capacity Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) terminal cisternae of skeletal muscle. CASQ1 functions as both a Ca(2+)-binding protein and a luminal regulator of ryanodine receptor (RYR1)-mediated Ca(2+) release. Mice lacking skeletal CASQ1 are viable but exhibit reduced levels of releasable Ca(2+) and altered contractile properties. Here we report that CASQ1-null mice exhibit increased spontaneous mortality and susceptibility to heat- and anesthetic-induced sudden death. Exposure of CASQ1-null mice to either 2% halothane or heat stress triggers lethal episodes characterized by whole-body contractures, elevated core temperature, and severe rhabdomyolysis, which are prevented by prior dantrolene administration. The characteristics of these events are remarkably similar to analogous episodes observed in humans with malignant hyperthermia (MH) and animal models of MH and environmental heat stroke (EHS). In vitro studies indicate that CASQ1-null muscle exhibits increased contractile sensitivity to temperature and caffeine, temperature-dependent increases in resting Ca(2+), and an increase in the magnitude of depolarization-induced Ca(2+) release. These results demonstrate that CASQ1 deficiency alters proper control of RYR1 function and suggest CASQ1 as a potential candidate gene for linkage analysis in families with MH/EHS where mutations in the RYR1 gene are excluded.


Asunto(s)
Anestésicos/efectos adversos , Proteínas de Unión al Calcio/metabolismo , Muerte Súbita , Calor/efectos adversos , Hipertermia Maligna/genética , Animales , Cafeína/farmacología , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Calsecuestrina , Estimulantes del Sistema Nervioso Central/farmacología , Dantroleno/farmacología , Muerte Súbita/etiología , Femenino , Halotano/efectos adversos , Humanos , Masculino , Hipertermia Maligna/metabolismo , Ratones , Ratones Noqueados , Relajantes Musculares Centrales/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Rabdomiólisis/etiología , Rabdomiólisis/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Tasa de Supervivencia
2.
J Physiol ; 586(20): 4815-24, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18772199

RESUMEN

In non-excitable cells, agonist-induced depletion of intracellular Ca(2+) stores triggers Ca(2+) influx via a process termed store-operated Ca(2+) entry (SOCE). In T-lymphocytes, stromal interaction molecule 1 (STIM1) acts as the intra-store Ca(2+) sensor and Orai1 functions as the Ca(2+)-permeable SOCE channel activated by STIM1 following store depletion. Two functionally distinct Ca(2+) entry pathways exist in skeletal muscle; one activated by store depletion (SOCE) and a second by sustained/repetitive depolarization that does not require store depletion (excitation-coupled Ca(2+) entry, ECCE). However, the role of STIM1 and Orai1 in coordinating SOCE and ECCE activity in skeletal muscle and whether these two Ca(2+) entry pathways represent distinct molecular entities or two different activation mechanisms of the same channel complex is unknown. Here we address these issues using siRNA-mediated STIM1 knockdown, dominant-negative Orai1, and permeation-defective Orai1 to determine the role of STIM1 and Orai1 in store-operated and excitation-coupled Ca(2+) entry in skeletal myotubes. SOCE and ECCE activity were quantified from both intracellular Ca(2+) measurements and Mn(2+) quench assays. We found that STIM1 siRNA reduced STIM1 protein by more than 90% and abolished SOCE activity, while expression of siRNA-resistant hSTIM1 fully restored SOCE. SOCE was also abolished by dominant-negative Orai1 (E106Q) and markedly reduced by expression of a permeation-defective Orai1 (E190Q). In contrast, ECCE was unaffected by STIM1 knockdown, E106Q expression or E190Q expression. These results are the first to demonstrate that SOCE in skeletal muscle requires both STIM1 and Orai1 and that SOCE and ECCE represent two distinct molecular entities.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/fisiología , Mioblastos/fisiología , Contracción Miocárdica/fisiología , Animales , Células Cultivadas , Estimulación Eléctrica/métodos , Ratones , Músculo Esquelético/citología , Proteína ORAI1 , Molécula de Interacción Estromal 1
3.
J Gen Physiol ; 130(4): 365-78, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17846166

RESUMEN

Ca(2+) release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca(2+) to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation-contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca(2+) release during excitation-contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca(2+) release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca(2+) release during excitation-contraction coupling in skeletal muscle.


Asunto(s)
Señalización del Calcio , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Contracción Muscular/fisiología , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio/metabolismo , Canales de Calcio Tipo L , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calsecuestrina/metabolismo , Línea Celular Transformada , Células Cultivadas , Electrofisiología , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Conejos , Retículo Sarcoplasmático/metabolismo
4.
J Med Genet ; 44(2): e67, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17293538

RESUMEN

A novel single-nucleotide deletion in exon 100 of the RYR1 gene, corresponding to deletion of nucleotide 14,510 in the human RyR1 mRNA (c14510delA), was identified in a man with malignant hyperthermia and in his two daughters who were normal for malignant hyperthermia. This deletion results in a RyR1 protein lacking the last 202 amino acid residues. All three subjects heterozygotic for the mutated allele presented with a prevalence of type 1 fibres with central cores, although none experienced clinical signs of myopathy. Expression of the truncated protein resulted in non-functional RYR1 calcium release channels. Expression of wild-type and RyR1(R4836fsX4838) proteins resulted in heterozygotic release channels with overall functional properties similar to those of wild-type RyR1 channels. Nevertheless, small differences in sensitivity to calcium and caffeine were observed in heterotetrameric channels, which also presented an altered assembly/stability in sucrose-gradient centrifugation analysis. Altogether, these data suggest that altered RYR1 tetramer assembly/stability coupled with subtle chronic changes in Ca2+ homoeostasis over the long term may contribute to the development of core lesions and incomplete malignant hyperthermia susceptibility penetrance in individuals carrying this novel RYR1 mutation.


Asunto(s)
Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Eliminación de Secuencia , Anciano , Animales , Biopsia , Calcio/metabolismo , Línea Celular , Citosol/metabolismo , ADN/sangre , ADN/genética , ADN/aislamiento & purificación , Exones , Tamización de Portadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Riñón , Leucocitos/fisiología , Masculino , Hipertermia Maligna/genética , Ratones , Ratones Noqueados , Contracción Muscular , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiopatología , Mutación , ARN Mensajero/genética , Canal Liberador de Calcio Receptor de Rianodina/deficiencia , Canal Liberador de Calcio Receptor de Rianodina/fisiología
5.
Hum Mutat ; 28(1): 61-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16958053

RESUMEN

Central core disease (CCD) and malignant hyperthermia (MH) are skeletal muscle disorders that are linked to mutations in the gene that encodes the type 1 ryanodine receptor (RYR1). The RYR1 ion channel plays a central role in excitation-contraction (EC) coupling by releasing Ca(2+) from an internal store. Pathogenic CCD mutations in RYR1 result in changes in the magnitude of Ca(2+) release during EC coupling. CCD has recently been linked to two novel deletions (c.12640_12648delCGCCAGTTC [p.Arg4214_Phe4216del] and c.14779_14784delGTCATC [p.Val4927_Ile4928del]) in the C-terminal region of RYR1. To determine the phenotypic consequences of these mutations and extend our understanding of the pathogenic mechanisms that underlie CCD, we determined functional effects on Ca(2+) release channel activity of analogous deletions (p.Arg4215_Phe4217del and p.Val4926_Ile4927del) engineered into rabbit RYR1 following expression in RYR1-null (dyspedic) myotubes and HEK293 cells. In addition, we assessed effects of the p.Arg4214 Phe4216del mutation on RYR1 function in lymphoblastoid cells obtained from CCD patients heterozygous for the mutation. Here we report that both deletions significantly reduce Ca(2+) release following RYR1 activation, but by different mechanisms. While the p.Arg4214_Phe4216del deletion promotes Ca(2+) depletion from intracellular stores by exhibiting a classic "leaky channel" behavior, the p.Val4927_Ile4928del deletion reduces Ca(2+) release by disrupting Ca(2+) gating and eliminating Ca(2+) permeation through the open channel.


Asunto(s)
Contracción Muscular/fisiología , Miopatía del Núcleo Central/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Animales Recién Nacidos , Calcio/metabolismo , Células Cultivadas , Estimulación Eléctrica/métodos , Electrofisiología/métodos , Eliminación de Gen , Humanos , Canales Iónicos/fisiología , Transporte Iónico/fisiología , Leucocitos/metabolismo , Leucocitos/fisiología , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína/genética , Conejos , Canal Liberador de Calcio Receptor de Rianodina/fisiología
6.
J Neurosci ; 23(4): 1340-50, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12598622

RESUMEN

The vanilloid receptor [transient receptor potential (TRP)V1, also known as VR1] is a member of the TRP channel family. These receptors share a significant sequence homology, a similar predicted structure with six transmembrane-spanning domains (S1-S6), a pore-forming region between S5 and S6, and the cytoplasmically oriented C- and N-terminal regions. Although structural/functional studies have identified some of the key amino acids influencing the gating of the TRPV1 ion channel, the possible contributions of terminal regions to vanilloid receptor function remain elusive. In the present study, C-terminal truncations of rat TRPV1 have been constructed to characterize the contribution of the cytoplasmic C-terminal region to TRPV1 function and to delineate the minimum amount of C tail necessary to form a functional channel. The truncation of 31 residues was sufficient to induce changes in functional properties of TRPV1 channel. More pronounced effects of C-terminal truncation were seen in mutants lacking the final 72 aa. These changes were characterized by a decline of capsaicin-, pH-, and heat-sensitivity; progressive reduction of the activation thermal threshold (from 41.5 to 28.6 degrees C); and slowing of the activation rate of heat-evoked membrane currents (Q10 from 25.6 to 4.7). The voltage-induced currents of the truncated mutants exhibited a slower onset, markedly reduced outward rectification, and significantly smaller peak tail current amplitudes. Truncation of the entire TRPV1 C-terminal domain (155 residues) resulted in a nonfunctional channel. These results indicate that the cytoplasmic COOH-terminal domain strongly influences the TRPV1 channel activity, and that the distal half of this structural domain confers specific thermal sensitivity.


Asunto(s)
Receptores de Droga/química , Receptores de Droga/fisiología , Secuencia de Aminoácidos , Animales , Capsaicina/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Conductividad Eléctrica , Calor , Humanos , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Protones , Ratas , Receptores de Droga/genética , Alineación de Secuencia , Eliminación de Secuencia , Serina/genética
7.
Skelet Muscle ; 5: 4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25717360

RESUMEN

BACKGROUND: Ca(2+) influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca(2+) permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed. METHODS: We generated a mouse with a Ca(2+) binding and/or permeation defect in the voltage-dependent Ca(2+) channel, CaV1.1, and used Ca(2+) imaging, western blotting, immunohistochemistry, proximity ligation assays, SUnSET analysis of protein synthesis, and Ca(2+) imaging techniques to define pathways modulated by Ca(2+) binding and/or permeation of CaV1.1. We also assessed fiber type distributions, cross-sectional area, and force frequency and fatigue in isolated muscles. RESULTS: Using mice with a pore mutation in CaV1.1 required for Ca(2+) binding and/or permeation (E1014K, EK), we demonstrate that CaV1.1 opening is coupled to CaMKII activation and refilling of sarcoplasmic reticulum Ca(2+) stores during sustained activity. Decreases in these Ca(2+)-dependent enzyme activities alter downstream signaling pathways (Ras/Erk/mTORC1) that lead to decreased muscle protein synthesis. The physiological consequences of the permeation and/or Ca(2+) binding defect in CaV1.1 are increased fatigue, decreased fiber size, and increased Type IIb fibers. CONCLUSIONS: While not essential for excitation-contraction coupling, Ca(2+) binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance.

8.
Neuroreport ; 14(7): 1061-5, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12802203

RESUMEN

The vanilloid receptor TRPV1 is a ligand-gated cation channel that can be activated by capsaicin, acids and noxious heat. For vanilloids, a stretch of approximately 8 amino acids in the vicinity of the TM3 region on the cytosolic side of TRPV1 and R114 and E761 in the N- and C-cytosolic tails, respectively, has been shown to be critical for capsaicin binding and channel activation. Here, we report that intracellular application of vanilloids is insufficient for activating TRPV1 channels in HEK293T cells. Pipette solution (ICS) for recording membrane currents was supplemented with 50 microM capsaicin (n=14) or 1 microM resiniferatoxin (RTX) (n=39) and the responses induced by extracellular capsaicin (1 microM) or RTX (100 nM) were recorded at intervals >50% of that needed for diffusion of Lucifer yellow from the pipette to reach maximum fluorescence (n=7). We found that all cells with expressed TRPV1 exhibited a similar sensitivity to vanilloids irrespective of whether the membrane currents were recorded with electrodes filled with ICS containing capsaicin or RTX or only with control ICS. We suggest that, in addition to intracellularly located agonist recognition sites of TRPV1, there is at least one resides on the extracellular side, which needs to be occupied to activate the channel.


Asunto(s)
Capsaicina/farmacología , Líquido Intracelular/efectos de los fármacos , Líquido Intracelular/metabolismo , Receptores de Droga/metabolismo , Animales , Línea Celular , Humanos , Ratas
9.
Biochem Biophys Res Commun ; 322(4): 1256-66, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15336973

RESUMEN

Ca2+ ions play a pivotal role in a wide array of cellular processes ranging from fertilization to cell death. In skeletal muscle, a mechanical interaction between plasma membrane dihydropyridine receptors (DHPRs, L-type Ca2+ channels) and Ca2+ release channels (ryanodine receptors, RyR1s) of the sarcoplasmic reticulum orchestrates a complex, bi-directional Ca2+ signaling process that converts electrical impulses in the sarcolemma into myoplasmic Ca2+ transients during excitation-contraction coupling. Mutations in the genes that encode the two proteins that coordinate this electrochemical conversion process (the DHPR and RyR1) result in a variety of skeletal muscle disorders including malignant hyperthermia (MH), central core disease (CCD), multiminicore disease, nemaline rod myopathy, and hypokalemic periodic paralysis. Although RyR1 and DHPR disease mutations are thought to alter excitability and Ca2+ homeostasis in skeletal muscle, only recently has research begun to probe the molecular mechanisms by which these genetic defects lead to distinct clinical and histopathological manifestations. This review focuses on recent advances in determining the impact of MH and CCD mutations in RyR1 on muscle Ca2+ signaling and how these effects contribute to disease-specific aspects of these disorders.


Asunto(s)
Señalización del Calcio , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Miopatía del Núcleo Central/genética , Miopatía del Núcleo Central/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Calcio/metabolismo , Humanos , Músculo Esquelético/metabolismo , Mutación , Contracción Miocárdica , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA