Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 295(25): 8613-8627, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32393578

RESUMEN

N-Methyl-d-aspartate type glutamate receptors (NMDARs) are key mediators of synaptic activity-regulated gene transcription in neurons, both during development and in the adult brain. Developmental differences in the glutamate receptor ionotropic NMDA 2 (GluN2) subunit composition of NMDARs determines whether they activate the transcription factor cAMP-responsive element-binding protein 1 (CREB). However, whether the developmentally regulated GluN3A subunit also modulates NMDAR-induced transcription is unknown. Here, using an array of techniques, including quantitative real-time PCR, immunostaining, reporter gene assays, RNA-Seq, and two-photon glutamate uncaging with calcium imaging, we show that knocking down GluN3A in rat hippocampal neurons promotes the inducible transcription of a subset of NMDAR-sensitive genes. We found that this enhancement is mediated by the accumulation of phosphorylated p38 mitogen-activated protein kinase in the nucleus, which drives the activation of the transcription factor myocyte enhancer factor 2C (MEF2C) and promotes the transcription of a subset of synaptic activity-induced genes, including brain-derived neurotrophic factor (Bdnf) and activity-regulated cytoskeleton-associated protein (Arc). Our evidence that GluN3A regulates MEF2C-dependent transcription reveals a novel mechanism by which NMDAR subunit composition confers specificity to the program of synaptic activity-regulated gene transcription in developing neurons.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Plasticidad Neuronal/fisiología , Transcripción Genética , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Núcleo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Hipocampo/metabolismo , Factores de Transcripción MEF2/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Tetrodotoxina/farmacología , Transcripción Genética/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
J Neurochem ; 137(2): 164-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826701

RESUMEN

Neuronal activity sculpts brain development by inducing the transcription of genes such as brain-derived neurotrophic factor (Bdnf) that modulate the function of synapses. Sensory experience is transduced into changes in gene transcription via the activation of calcium signaling pathways downstream of both L-type voltage-gated calcium channels (L-VGCCs) and NMDA-type glutamate receptors (NMDARs). These signaling pathways converge on the regulation of transcription factors including calcium-response factor (CaRF). Although CaRF is dispensable for the transcriptional induction of Bdnf following the activation of L-VGCCs, here we show that the loss of CaRF leads to enhanced NMDAR-dependent transcription of Bdnf as well as Arc. We identify the NMDAR subunit-encoding gene Grin3a as a regulatory target of CaRF, and we show that expression of both Carf and Grin3a is depressed by the elevation of intracellular calcium, linking the function of this transcriptional regulatory pathway to neuronal activity. We find that light-dependent activation of Bdnf and Arc transcription is enhanced in the visual cortex of young CaRF knockout mice, suggesting a role for CaRF-dependent dampening of NMDAR-dependent transcription in the developing brain. Finally, we demonstrate that enhanced Bdnf expression in CaRF-lacking neurons increases inhibitory synapse formation. Taken together, these data reveal a novel role for CaRF as an upstream regulator of NMDAR-dependent gene transcription and synapse formation in the developing brain. NMDARs promote brain development by inducing the transcription of genes, including brain-derived neurotrophic factor (BDNF). We show that the transcription factor calcium-response factor (CaRF) limits NMDAR-dependent BDNF induction by regulating expression of the NMDAR subunit GluN3A. Loss of CaRF leads to enhanced BDNF-dependent GABAergic synapse formation indicating the importance of this process for brain development. Our observation that both CaRF and GluN3A are down-regulated by intracellular calcium suggests that this may be a mechanism for experience-dependent modulation of synapse formation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Glicoproteínas de Membrana/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/genética , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Tetrodotoxina/farmacología , Factores de Transcripción/genética , Valina/análogos & derivados , Valina/farmacología , Corteza Visual/metabolismo
3.
J Neurosci ; 32(37): 12780-5, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22973001

RESUMEN

Transcription of the gene encoding brain-derived neurotropic factor (BDNF) is induced in response to a wide variety of extracellular stimuli via the activation of a complex array of transcription factors. However, to what degree individual transcription factors confer specificity upon the regulation of Bdnf is poorly understood. Previous studies have shown that members of the myocyte enhancer factor 2 (MEF2) transcription factor family bind a regulatory element upstream of Bdnf promoter I and associate with an unknown binding site in Bdnf promoter IV. Here we identify calcium-response element 1 as the MEF2 binding site in promoter IV of the Bdnf gene and determine the requirements for individual MEF2 family members in Bdnf regulation. MEF2A, MEF2C, and MEF2D are all highly expressed in embryonic rat cortical neurons; however, only the Mef2c gene encodes an MEF2 splice variant that lacks the γ repressor-domain. We find that MEF2C variants lacking the γ-domain are particularly sensitive to activation by membrane depolarization, raising the possibility that the MEF2s may differentially contribute to activity-regulated gene expression. We find that only knockdown of MEF2C significantly impairs membrane depolarization-induced expression of Bdnf exon IV. By contrast, knockdown of MEF2D significantly enhanced depolarization-induced expression of Bdnf exon I. Together, these data show that individual members of the MEF2 family of transcription factors differentially regulate the expression of Bdnf, revealing a new mechanism that may confer specificity on the induction of this biologically important gene.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Potenciales de la Membrana/fisiología , Factores Reguladores Miogénicos/metabolismo , Neuronas/fisiología , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica/fisiología , Factores de Transcripción MEF2 , Masculino , Ratones , Ratas
4.
Prog Neurobiol ; 94(3): 259-95, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21620929

RESUMEN

The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.


Asunto(s)
Regulación de la Expresión Génica , Neuronas/fisiología , Transcripción Genética , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cromatina/metabolismo , Perfilación de la Expresión Génica , Histonas/metabolismo , Humanos , Plasticidad Neuronal/fisiología , Regiones Promotoras Genéticas , Interferencia de ARN , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA