Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(8): 3224-3230, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37125440

RESUMEN

The application of CdSe nanoplatelets (NPLs) in the ultraviolet/blue region remains an open challenge due to charge trapping typically leading to limited photoluminescence quantum efficiency (PL QE) and sub-bandgap emission in core-only NPLs. Here, we synthesized 3.5 monolayer core/crown CdSe/CdS NPLs with various crown dimensions, exhibiting saturated blue emission and PL QE up to 55%. Compared to core-only NPLs, the PL intensity decays monoexponentially over two decades due to suppressed deep trapping and delayed emission. In both core-only and core/crown NPLs we observe biexciton-mediated optical gain between 470 and 510 nm, with material gain coefficients up to 7900 cm-1 and consistently lower gain thresholds in crowned NPLs. Gain lifetimes are limited to 40 ps, due to residual ultrafast trapping and higher exciton densities at threshold. Our results provide guidelines for rational optimization of thin CdSe NPLs toward lighting and light-amplification applications.

2.
Heliyon ; 10(2): e24497, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298666

RESUMEN

In this study, to address the stability issues, we synthesized a CsPbBr3-coated poly (maleic anhydride-alt-1-octadecene) (CsPbBr3/PMA) using a modified hot-injection method. The CsPbBr3/PMA perovskite nanocrystals (PNCs) exhibited effective green emission at 522 nm with an improved photoluminescence quantum yield (86.8 %) compared to traditional CsPbBr3 PNCs (54.2 %). The ligands in the polymer coating can bond with the uncoordinated Pb and Br ions on the surface of PNCs to minimize surface defects and avoid exposure to the external environment, enhancing the stability of the perovskites. Time-resolved photoluminescence spectra showed longer lifetimes for CsPbBr3/PMA PNCs, while transient absorption measurements provided valuable insights into the intraband hot-exciton relaxation and recombination. We demonstrate the potential application of CSPbBr3/PMA in a down-conversion white-light-emitting diode (LED) by coupling green CsPbBr3/PMA and red K2SiF6:Mn4+ phosphor-coated glass slides onto a 455-nm blue GaN LED. The white LED produced a white light with the International Commission on Illumination color coordinates of (0.323, 0.345), luminous efficiency of 58.4 lm/W, and color rendering index of 83.2. The fabricated, white-LED system obtained a wide color gamut of 125.3 % of the National Television Standards Committee and 98.9 % of Rec. 2020. The findings demonstrate that CsPbBr3/PMA can be an efficient down-conversion material for white LEDs and backlighting.

3.
J Phys Chem Lett ; 14(10): 2620-2626, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36888728

RESUMEN

Transition metal dichalcogenides (TMDs) are nanostructured semiconductors with prospects in optoelectronics and photocatalysis. Several bottom-up procedures to synthesize such materials have been developed yielding colloidal transition metal dichalcogenides (c-TMDs). Where such methods initially yielded multilayered sheets with indirect band gaps, recently, also the formation of monolayered c-TMDs became possible. Despite these advances, no clear picture on the charge carrier dynamics in monolayer c-TMDs exists to date. Here, we show through broadband and multiresonant pump-probe spectroscopy, that the carrier dynamics in monolayer c-TMDs are dominated by a fast electron trapping mechanism, universal to both MoS2 and MoSe2, contrasting hole-dominated trapping in their multilayered counterparts. Through a detailed hyperspectral fitting procedure, sizable exciton red shifts are found and assigned to static shifts originating from both interactions with the trapped electron population and lattice heating. Our results pave the way to optimizing monolayer c-TMDs via passivation of predominantly the electron-trap sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA