Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 298(8): 102138, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35714771

RESUMEN

The plasma membrane calcium ATPase (PMCA) extrudes calcium from the cytosol to the extracellular space to terminate calcium-dependent signaling. Although the distribution of PMCA is crucial for its function, the molecular mechanisms that regulate the localization of PMCA isoforms are not well understood. PLEKHA7 is implicated by genetic studies in hypertension and the regulation of calcium handling. PLEKHA7 recruits the small adapter protein PDZD11 to adherens junctions, and together they control the trafficking and localization of plasma membrane associated proteins, including the Menkes copper ATPase. Since PDZD11 binds to the C-terminal domain of b-isoforms of PMCA, PDZD11 and its interactor PLEKHA7 could control the localization and activity of PMCA. Here, we test this hypothesis using cultured cell model systems. We show using immunofluorescence microscopy and a surface biotinylation assay that KO of either PLEKHA7 or PDZD11 in mouse kidney collecting duct epithelial cells results in increased accumulation of endogenous PMCA at lateral cell-cell contacts and PDZ-dependent ectopic apical localization of exogenous PMCA4x/b isoform. In HeLa cells, coexpression of PDZD11 reduces membrane accumulation of overexpressed PMCA4x/b, and analysis of cytosolic calcium transients shows that PDZD11 counteracts calcium extrusion activity of overexpressed PMCA4x/b, but not PMCA4x/a, which lacks the PDZ-binding motif. Moreover, KO of PDZD11 in either endothelial (bEnd.3) or epithelial (mouse kidney collecting duct) cells increases the rate of calcium extrusion. Collectively, these results suggest that the PLEKHA7-PDZD11 complex modulates calcium homeostasis by regulating the localization of PMCA.


Asunto(s)
Calcio , Proteínas Portadoras , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Uniones Adherentes/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Células Cultivadas , Células HeLa , Humanos , Ratones , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Isoformas de Proteínas/metabolismo
2.
J Biol Chem ; 298(4): 101797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35259394

RESUMEN

Zonula occludens-1 (ZO-1), the major scaffolding protein of tight junctions (TJs), recruits the cytoskeleton-associated proteins cingulin (CGN) and paracingulin (CGNL1) to TJs by binding to their N-terminal ZO-1 interaction motif. The conformation of ZO-1 can be either folded or extended, depending on cytoskeletal tension and intramolecular and intermolecular interactions, and only ZO-1 in the extended conformation recruits the transcription factor DbpA to TJs. However, the sequences of ZO-1 that interact with CGN and CGNL1 and the role of TJ proteins in ZO-1 TJ assembly are not known. Here, we used glutathione-S-transferase pulldowns and immunofluorescence microscopy to show that CGN and CGNL1 bind to the C-terminal ZU5 domain of ZO-1 and that this domain is required for CGN and CGNL1 recruitment to TJs and to phase-separated ZO-1 condensates in cells. We show that KO of CGN, but not CGNL1, results in decreased accumulation of ZO-1 at TJs. Furthermore, ZO-1 lacking the ZU5 domain showed decreased accumulation at TJs, was detectable along lateral contacts, had a higher mobile fraction than full-length ZO-1 by fluorescence recovery after photobleaching analysis, and had a folded conformation, as determined by structured illumination microscopy of its N-terminal and C-terminal ends. The CGN-ZU5 interaction promotes the extended conformation of ZO-1, since binding of the CGN-ZO-1 interaction motif region to ZO-1 resulted in its interaction with DbpA in cells and in vitro. Together, these results show that binding of CGN to the ZU5 domain of ZO-1 promotes ZO-1 stabilization and accumulation at TJs by promoting its extended conformation.


Asunto(s)
Proteínas del Citoesqueleto , Uniones Estrechas , Proteína de la Zonula Occludens-1 , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/química , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
3.
J Biol Chem ; 291(21): 11016-29, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27044745

RESUMEN

PLEKHA7 is a junctional protein implicated in stabilization of the cadherin protein complex, hypertension, cardiac contractility, glaucoma, microRNA processing, and susceptibility to bacterial toxins. To gain insight into the molecular basis for the functions of PLEKHA7, we looked for new PLEKHA7 interactors. Here, we report the identification of PDZ domain-containing protein 11 (PDZD11) as a new interactor of PLEKHA7 by yeast two-hybrid screening and by mass spectrometry analysis of PLEKHA7 immunoprecipitates. We show that PDZD11 (17 kDa) is expressed in epithelial and endothelial cells, where it forms a complex with PLEKHA7, as determined by co-immunoprecipitation analysis. The N-terminal Trp-Trp (WW) domain of PLEKHA7 interacts directly with the N-terminal 44 amino acids of PDZD11, as shown by GST-pulldown assays. Immunofluorescence analysis shows that PDZD11 is localized at adherens junctions in a PLEKHA7-dependent manner, because its junctional localization is abolished by knock-out of PLEKHA7, and is rescued by re-expression of exogenous PLEKHA7. The junctional recruitment of nectin-1 and nectin-3 and their protein levels are decreased via proteasome-mediated degradation in epithelial cells where either PDZD11 or PLEKHA7 have been knocked-out. PDZD11 forms a complex with nectin-1 and nectin-3, and its PDZ domain interacts directly with the PDZ-binding motif of nectin-1. PDZD11 is required for the efficient assembly of apical junctions of epithelial cells at early time points in the calcium-switch model. These results show that the PLEKHA7-PDZD11 complex stabilizes nectins to promote efficient early junction assembly and uncover a new molecular mechanism through which PLEKHA7 recruits PDZ-binding membrane proteins to epithelial adherens junctions.


Asunto(s)
Uniones Adherentes/metabolismo , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Complejos Multiproteicos/metabolismo , Uniones Adherentes/genética , Animales , Proteínas Portadoras/genética , Moléculas de Adhesión Celular/genética , Perros , Humanos , Células de Riñón Canino Madin Darby , Complejos Multiproteicos/genética , Nectinas
4.
Cells ; 12(15)2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37566083

RESUMEN

Cingulin (CGN) and paracingulin (CGNL1) are cytoplasmic proteins of tight junctions (TJs), where they play a role in tethering ZO-1 to the actomyosin and microtubule cytoskeletons. The role of CGN and CGNL1 in the barrier function of epithelia is not completely understood. Here, we analyzed the effect of the knock out (KO) of either CGN or CGNL1 or both on the paracellular permeability of monolayers of kidney epithelial (MDCK) cells. KO cells displayed a modest but significant increase in the transepithelial resistance (TER) of monolayers both in the steady state and during junction assembly by the calcium switch, whereas the permeability of the monolayers to 3 kDa dextran was not affected. The permeability to sodium was slightly but significantly decreased in KO cells. This phenotype correlated with slightly increased mRNA levels of claudin-2, slightly decreased protein levels of claudin-2, and reduced junctional accumulation of claudin-2, which was rescued by CGN or CGNL1 but not by ZO-1 overexpression. These results confirm previous observations indicating that CGN and CGNL1 are dispensable for the barrier function of epithelia and suggest that the increase in the TER in clonal lines of MDCK cells KO for CGN, CGNL1, or both is due to reduced protein expression and junctional accumulation of the sodium pore-forming claudin, claudin-2.


Asunto(s)
Claudina-2 , Uniones Estrechas , Animales , Perros , Células de Riñón Canino Madin Darby , Uniones Estrechas/metabolismo , Claudina-2/genética , Claudina-2/metabolismo , Línea Celular , Claudinas/genética , Claudinas/metabolismo
5.
J Cell Biol ; 222(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37204781

RESUMEN

The mechanisms that regulate the spatial sorting of nonmuscle myosins-2 (NM2) isoforms and couple them mechanically to the plasma membrane are unclear. Here we show that the cytoplasmic junctional proteins cingulin (CGN) and paracingulin (CGNL1) interact directly with NM2s through their C-terminal coiled-coil sequences. CGN binds strongly to NM2B, and CGNL1 to NM2A and NM2B. Knockout (KO), exogenous expression, and rescue experiments with WT and mutant proteins show that the NM2-binding region of CGN is required for the junctional accumulation of NM2B, ZO-1, ZO-3, and phalloidin-labeled actin filaments, and for the maintenance of tight junction membrane tortuosity and apical membrane stiffness. CGNL1 expression promotes the junctional accumulation of both NM2A and NM2B and its KO results in myosin-dependent fragmentation of adherens junction complexes. These results reveal a mechanism for the junctional localization of NM2A and NM2B and indicate that, by binding to NM2s, CGN and CGNL1 mechanically couple the actomyosin cytoskeleton to junctional protein complexes to mechanoregulate the plasma membrane.


Asunto(s)
Membrana Celular , Proteínas del Citoesqueleto , Citoesqueleto , Miosinas , Uniones Adherentes/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Uniones Estrechas/metabolismo
6.
Cells ; 11(4)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35203278

RESUMEN

Transmembrane proteins of adherens and tight junctions are known targets for viruses and bacterial toxins. The coronavirus receptor ACE2 has been localized at the apical surface of epithelial cells, but it is not clear whether ACE2 is localized at apical Cell-Cell junctions and whether it associates with junctional proteins. Here we explored the expression and localization of ACE2 and its association with transmembrane and tight junction proteins in epithelial tissues and cultured cells by data mining, immunoblotting, immunofluorescence microscopy, and co-immunoprecipitation experiments. ACE2 mRNA is abundant in epithelial tissues, where its expression correlates with the expression of the tight junction proteins cingulin and occludin. In cultured epithelial cells ACE2 mRNA is upregulated upon differentiation and ACE2 protein is widely expressed and co-immunoprecipitates with the transmembrane proteins ADAM17 and CD9. We show by immunofluorescence microscopy that ACE2 colocalizes with ADAM17 and CD9 and the tight junction protein cingulin at apical junctions of intestinal (Caco-2), mammary (Eph4) and kidney (mCCD) epithelial cells. These observations identify ACE2, ADAM17 and CD9 as new epithelial junctional transmembrane proteins and suggest that the cytokine-enhanced endocytic internalization of junction-associated protein complexes comprising ACE2 may promote coronavirus entry.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Uniones Intercelulares/metabolismo , Uniones Intercelulares/virología , Proteína ADAM17/metabolismo , Uniones Adherentes/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Permeabilidad de la Membrana Celular , Coronavirus/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/virología , Expresión Génica/genética , Tetraspanina 29/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo , Transcriptoma/genética
7.
Front Cell Dev Biol ; 9: 729444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568338

RESUMEN

PLEKHA5, PLEKHA6, and PLEKHA7 (WW-PLEKHAs) are members of the PLEKHA family of proteins that interact with PDZD11 through their tandem WW domains. WW-PLEKHAs contribute to the trafficking and retention of transmembrane proteins, including nectins, Tspan33, and the copper pump ATP7A, at cell-cell junctions and lateral membranes. However, the structural basis for the distinct subcellular localizations of PLEKHA5, PLEKHA6, and PLEKHA7 is not clear. Here we expressed mutant and chimeric proteins of WW-PLEKHAs in cultured cells to clarify the role of their structural domains in their localization. We found that the WW-mediated interaction between PLEKHA5 and PDZD11 is required for their respective association with cytoplasmic microtubules. The PH domain of PLEKHA5 is required for its localization along the lateral plasma membrane and promotes the lateral localization of PLEKHA7 in a chimeric molecule. Although the PH domain of PLEKHA7 is not required for its localization at the adherens junctions (AJ), it promotes a AJ localization of chimeric proteins. The C-terminal region of PLEKHA6 and PLEKHA7 and the coiled-coil region of PLEKHA7 promote their localization at AJ of epithelial cells. These observations indicate that the localizations of WW-PLEKHAs at specific subcellular sites, where they recruit PDZD11, are the result of multiple cooperative protein-lipid and protein-protein interactions and provide a rational basis for the identification of additional proteins involved in trafficking and sorting of WW-PLEKHAs.

8.
Mol Biol Cell ; 32(21): ar34, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613798

RESUMEN

Copper homeostasis is crucial for cellular physiology and development, and its dysregulation leads to disease. The Menkes ATPase ATP7A plays a key role in copper efflux, by trafficking from the Golgi to the plasma membrane upon cell exposure to elevated copper, but the mechanisms that target ATP7A to the cell periphery are poorly understood. PDZD11 interacts with the C-terminus of ATP7A, which contains sequences involved in ATP7A trafficking, but the role of PDZD11 in ATP7A localization is unknown. Here we identify PLEKHA5 and PLEKHA6 as new interactors of PDZD11 that bind to the PDZD11 N-terminus through their WW domains similarly to the junctional protein PLEKHA7. Using CRISPR-KO kidney epithelial cells, we show by immunofluorescence microscopy that WW-PLEKHAs (PLEKHA5, PLEKHA6, PLEKHA7) recruit PDZD11 to distinct plasma membrane localizations and that they are required for the efficient anterograde targeting of ATP7A to the cell periphery in elevated copper conditions. Pull-down experiments show that WW-PLEKHAs promote PDZD11 interaction with the C-terminus of ATP7A. However, WW-PLEKHAs and PDZD11 are not necessary for ATP7A Golgi localization in basal copper, ATP7A copper-induced exit from the Golgi, and ATP7A retrograde trafficking to the Golgi. Finally, measuring bioavailable and total cellular copper, metallothionein-1 expression, and cell viability shows that WW-PLEKHAs and PDZD11 are required for maintaining low intracellular copper levels when cells are exposed to elevated copper. These data indicate that WW-PLEKHAs-PDZD11 complexes regulate the localization and function of ATP7A to promote copper extrusion in elevated copper.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Adenosina Trifosfatasas/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Comunicación Celular , Membrana Celular/metabolismo , Cobre/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Citoplasma/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/citología , Fagocitosis , Transporte de Proteínas
9.
Curr Biol ; 27(24): 3783-3795.e8, 2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29199076

RESUMEN

Tensile forces regulate epithelial homeostasis, but the molecular mechanisms behind this regulation are poorly understood. Using structured illumination microscopy and proximity ligation assays, we show that the tight junction protein ZO-1 exists in stretched and folded conformations within epithelial cells, depending on actomyosin-generated force. We also show that ZO-1 and ZO-2 regulate the localization of the transcription factor DbpA and the tight junction membrane protein occludin in a manner that depends on the organization of the actin cytoskeleton, myosin-II activity, and substrate stiffness, resulting in modulation of gene expression, cell proliferation, barrier function, and cyst morphogenesis. Pull-down experiments show that interactions between N-terminal (ZPSG) and C-terminal domains of ZO-1 prevent binding of DbpA to the ZPSG, suggesting that force-dependent intra-molecular interactions regulate ZPSG binding to ligands within cells. In vivo and in vitro experiments also suggest that ZO-1 heterodimerization with ZO-2 promotes the stretched conformation and ZPSG interaction with ligands. Magnetic tweezers single-molecule experiments suggest that pN-scale tensions (∼2-4 pN) are sufficient to maintain the stretched conformation of ZO-1, while keeping its structured domains intact, and that 5-20 pN force is required to disrupt the interaction between the extreme C-terminal and the ZPSG domains of ZO-1. We propose that tensile forces regulate epithelial homeostasis by activating ZO proteins through stretching, to control the junctional recruitment and downstream signaling of their interactors.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Proteína de la Zonula Occludens-1/genética , Animales , Línea Celular , Femenino , Humanos , Ratones , Células Sf9 , Spodoptera , Proteína de la Zonula Occludens-1/metabolismo
10.
Immun Inflamm Dis ; 3(3): 239-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26417439

RESUMEN

Interleukin (IL)-33 is a cytokine of the IL-1 family, which signals through the ST2 receptor. Previous work demonstrated that the systemic administration of recombinant IL-33 reduces the development of atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice by inducing a Th1-to-Th2 shift. The objective of our study was to examine the role of endogenous IL-33 and ST2 in atherosclerosis. ApoE(-/-), IL-33(-/-)ApoE(-/-), and ST2(-/-)ApoE(-/-) mice were fed with a cholesterol-rich diet for 10 weeks. Additionally, a group of ApoE(-/-) mice was injected with a neutralizing anti-ST2 or an isotype control antibody during the period of the cholesterol-rich diet. Atherosclerotic lesion development was measured by Oil Red O staining in the thoracic-abdominal aorta and the aortic sinus. There were no significant differences in the lipid-staining area of IL-33(-/-)ApoE(-/-), ST2(-/-)ApoE(-/-), or anti-ST2 antibody-treated ApoE(-/-) mice, compared to ApoE(-/-) controls. The absence of IL-33 signaling had no major and consistent impact on the Th1/Th2 cytokine responses in the supernatant of in vitro-stimulated lymph node cells. In summary, deficiency of the endogenously produced IL-33 and its receptor ST2 does not impact the development of atherosclerosis in ApoE-deficient mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA