RESUMEN
INTRODUCTION: Long-read whole genome sequencing like Oxford Nanopore Technology, is increasingly being introduced in clinical settings. With its ability to simultaneously call sequence variation and DNA modifications including 5-methylcytosine, nanopore is a promising technology to improve diagnostics of imprinting disorders. METHODS: Currently, no tools to analyze DNA methylation patterns at known clinically relevant imprinted regions are available. Here we present NanoImprint, which generates an easily interpretable report, based on long-read nanopore sequencing, to use for identifying clinical relevant abnormalities in methylation levels at 14 imprinted regions and diagnosis of common imprinting disorders. RESULTS AND CONCLUSION: NanoImprint outputs a summarizing table and visualization plots displays methylation frequency (%) and chromosomal positions for all regions, with phased data color-coded for the two alleles. We demonstrate the utility of NanoImprint using three imprinting disorder samples from patients with Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS) and Prader-Willi syndrome (PWS). NanoImprint script is available from https://github.com/carolinehey/NanoImprint.
Asunto(s)
Síndrome de Angelman , Síndrome de Beckwith-Wiedemann , Metilación de ADN , Secuenciación de Nanoporos , Síndrome de Prader-Willi , Humanos , Síndrome de Angelman/genética , Síndrome de Angelman/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Secuenciación de Nanoporos/métodos , Nanoporos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/diagnóstico , Análisis de Secuencia de ADN/métodosRESUMEN
Atopic dermatitis (AD) is a common, itchy skin disease of complex inheritance characterized by dermal and epidermal inflammation. The heritability is considerable and well documented. To date, four genome scans have examined the AD phenotype, showing replicated linkage at 3p26-22, 3q13-21 and 18q11-21. Our previous AD scan showed evidence of linkage to loci at 3p and 18q, and furthermore at 4p15-14. In order to further investigate the genetic basis of AD, we collected and analysed a new Danish family sample consisting of 130 AD sib pair families (555 individuals including 295 children with AD). AD was diagnosed after clinical examination, AD severity was scored and specific IgE was determined. A linkage scan of chromosome 3, 4 and 18 was performed using 91 microsatellite markers. Linkage analyses were performed of dichotomous phenotypes and semi-quantitative traits including the AD severity score. We analysed the novel AD sample alone and together with the previously examined sample. AD severity showed a maximum Z-score of 3.7 at 4q22.1 suggesting the localization of a novel gene for AD severity. A maximum MOD score of 4.6 was obtained at 3p24 for the AD phenotype, providing the first significant linkage of AD at this locus. A maximum MLS score of 3.3 was obtained at 3q21 for IgE-associated AD, and evidence of linkage was also obtained at 3p22.2-21.31, 3q13, 4q35, and 18q12. The results presented should provide a firm basis for gene-targeting studies of AD and related disorders.
Asunto(s)
Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 4/genética , Dermatitis Atópica/genética , Ligamiento Genético/genética , Adolescente , Niño , Mapeo Cromosómico , Femenino , Genotipo , Humanos , Inmunoglobulina E/sangre , Masculino , Fenotipo , HermanosRESUMEN
Allergic rhinitis (AR) is a complex disorder with a polygenic, multifactorial aetiology. Twin studies have found the genetic contribution to be substantial. We collected and clinically characterised a sample consisting of 127 Danish nuclear families with at least two siblings suffering from AR or allergic conjunctivitis including 540 individuals (286 children and 254 parents). A whole-genome linkage scan, using 424 microsatellite markers, was performed on both this sample and an earlier collected sample consisting of 130 families with atopic dermatitis and other atopic disorders. A third sib-pair family sample, which was previously collected and genotyped, was added to the analysis increasing the total sample size to 357 families consisting of 1508 individuals. In total, 190 families with AR was included. The linkage analysis software Genehunter NPL, Genehunter MOD, and Genehunter Imprinting were used to obtain nonparametric and parametric linkage results. Family-based association analysis of positional candidate SNPs was carried out using the FBAT program. We obtained genome-wide significant linkage to a novel AR locus at 1p13 and suggestive linkage to two novel regions at 1q31-q32 and 20p12, respectively. Family-based association analysis of SNPs in the candidate locus DNND1B/CRB1 at 1q31 showed no significant association and could not explain the linkage signal observed. Suggestive evidence of linkage was also obtained at three AR loci previously reported (2q14-q23, 2q23, and 12p13) and indication of linkage was observed at a number of additional loci. Likely maternal imprinting was observed at 2q23, and possible maternal imprinting at 3q28.