Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Appl Environ Microbiol ; 81(15): 5064-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26002894

RESUMEN

Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications.


Asunto(s)
Variación Genética , Metagenoma , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Sphagnopsida/microbiología , Biología Computacional , Pruebas Genéticas , Sphagnopsida/crecimiento & desarrollo
2.
Beilstein J Org Chem ; 8: 186-91, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22423286

RESUMEN

The hydroxylation of n-alkanes, which proceeds in the presence of a P450-monooxygenase advantageously at temperatures significantly below room temperature, is described. In addition, an enzymatic hydroxylation of the "liquid gas" n-butane with in situ cofactor regeneration, which does not require high-pressure conditions, was developed. The resulting 2-butanol was obtained as the only regioisomer, at a product concentration of 0.16 g/L.

3.
Biotechnol Adv ; 40: 107520, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31981600

RESUMEN

Competitive sustainable production in industry demands new and better biocatalysts, optimized bioprocesses and cost-effective product recovery. Our review sheds light on the progress made for the individual steps towards these goals, starting with the discovery of new enzymes and their corresponding genes. The enzymes are subsequently engineered to improve their performance, combined in reaction cascades to expand the reaction scope and integrated in whole cells to provide an optimal environment for the bioconversion. Strain engineering using synthetic biology methods tunes the host for production, reaction design optimizes the reaction conditions and downstream processing ensures the efficient recovery of commercially viable products. Selected examples illustrate how modified enzymes can revolutionize future-oriented applications ranging from the bioproduction of bulk-, specialty- and fine chemicals, active pharmaceutical ingredients and carbohydrates, over the conversion of the greenhouse-gas CO2 into valuable products and biocontrol in agriculture, to recycling of synthetic polymers and recovery of precious metals.


Asunto(s)
Biología Sintética , Biocatálisis , Enzimas , Compuestos Orgánicos
5.
J Biotechnol ; 235: 171-80, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27015976

RESUMEN

There is growing demand for new bioactive compounds and biologicals for the pharmaceutical, agro- and food industries. Plant-associated microbes present an attractive and promising source to this end, but are nearly unexploited. Therefore, bioprospecting of plant microbiomes is gaining more and more attention. Due to their highly specialized and co-evolved genetic pool, plant microbiomes host a rich secondary metabolism. This article highlights the potential detection and use of secondary metabolites and enzymes derived from plant-associated microorganisms in biotechnology. As an example we summarize the findings from the moss microbiome with special focus on the genus Sphagnum and its biotechnological potential for the discovery of novel microorganisms and bioactive molecules. The selected examples illustrate unique and yet untapped properties of plant-associated microbiomes, which are an immense treasure box for future research.


Asunto(s)
Bioprospección , Metagenómica , Microbiota , Plantas/microbiología , Rizosfera
6.
J Biotechnol ; 191: 196-204, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24925696

RESUMEN

Biocascades allow one-pot synthesis of chemical building blocks omitting purification of reaction intermediates and expenses for downstream processing. Here we show the first whole cell double oxidation of n-heptane to produce chiral alcohols and heptanones. The concept of an artificial operon for co-expression of a monooxygenase from Bacillus megaterium (P450 BM3) and an alcohol dehydrogenase (RE-ADH) from Rhodococcus erythropolis is reported and compared to the widely used two-plasmid or Duet-vector expression systems. Both catalysts are co-expressed on a polycistronic constructs (single mRNA) that reduces recombinant DNA content and metabolic burden for the host cell, therefore increasing growth rate and expression level. Using the artificial operon system, the expression of P450 BM3 reached 81mgg(-1) cell dry weight. In addition, in situ cofactor regeneration through the P450 BM3/RE-ADH couple was enhanced by coupling to glucose oxidation by E. coli. Under optimized reaction conditions the artificial operon system displayed a product formation of 656mgL(-1) (5.7mM) of reaction products (heptanols+heptanones), which is 3-fold higher than the previously reported values for an in vitro oxidation cascade. In conjunction with the high product concentrations it was possible to obtain ee values of >99% for (S)-3-heptanol. Coexpression of a third alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) in the same host yielded complete oxidation of all heptanol isomers. Introduction of a second ADH enabled further to utilize both cofactors in the host cell (NADH and NADPH) which illustrates the simplicity and modular character of the whole cell oxidation concept employing an artificial operon system.


Asunto(s)
Alcohol Deshidrogenasa/biosíntesis , Heptanos/metabolismo , Oxigenasas de Función Mixta/biosíntesis , Oxidación-Reducción , Alcohol Deshidrogenasa/metabolismo , Alcanos/química , Alcanos/metabolismo , Bacillus megaterium/enzimología , Catálisis , Escherichia coli , Regulación Enzimológica de la Expresión Génica , Oxigenasas de Función Mixta/metabolismo , NADP/química , Oxígeno/química , Oxígeno/metabolismo , Rhodococcus/enzimología , Agua/química , Agua/metabolismo
7.
J Biosci Bioeng ; 113(2): 242-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22055919

RESUMEN

For over two decades, plant cell cultures have been a promising research platform to express recombinant and therapeutic proteins such as hormones, growth factors, full-size antibodies and antigens. Chosen as a good host for manufacturing recombinant proteins, the Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line has been studied in shake flasks by offline analysis of only a few growth parameters. The objective of this study is to comprehensively characterize the growth of a transgenic BY-2 cell line and to investigate the expression profile of the model protein GFP. Based on the correlations between nutrient consumption, cell growth and product formation, the intention is to improve the standard MS-medium. Hereby, multiple growth parameters were analyzed offline and online by using a respiration activity monitoring system (RAMOS). A reproducibly observed shift of the oxygen transfer rate (OTR) could be identified to indicate ammonium depletion in the medium. Concurrent with this ammonium depletion, the total protein concentration began to decrease. After the MS-medium was improved, the GFP concentration nearly doubled. When this improved ammonium enriched medium was applied to another transgenic tobacco cell line similar improvements to the amount of the glycoprotein influenza hemagglutinin (HA) produced by Nicotiana tabacum NT-1 cells could be achieved. Ultimately, this combined offline and online analysis can be successfully used for further cell line characterization and media optimization to improve growth and boost target product formation.


Asunto(s)
Nicotiana/genética , Proteínas Recombinantes/biosíntesis , Medios de Cultivo/química , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Compuestos de Amonio Cuaternario/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/citología , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA