Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7958): 814-821, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046086

RESUMEN

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Asunto(s)
Envejecimiento , Longevidad , Elongación de la Transcripción Genética , Animales , Humanos , Ratones , Ratas , Envejecimiento/genética , Insulina/metabolismo , Longevidad/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , ARN Circular , Somatomedinas , Nucleosomas , Histonas , División Celular , Restricción Calórica
2.
EMBO J ; 42(21): e113891, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37743763

RESUMEN

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.


Asunto(s)
Cilios , Orgánulos , Cilios/metabolismo , Diferenciación Celular
3.
J Am Soc Nephrol ; 35(3): 321-334, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38073039

RESUMEN

SIGNIFICANCE STATEMENT: There is an unmet need for biomarkers of disease progression in autosomal dominant polycystic kidney disease (ADPKD). This study investigated urinary extracellular vesicles (uEVs) as a source of such biomarkers. Proteomic analysis of uEVs identified matrix metalloproteinase 7 (MMP-7) as a biomarker predictive of rapid disease progression. In validation studies, MMP-7 was predictive in uEVs but not in whole urine, possibly because uEVs are primarily secreted by tubular epithelial cells. Indeed, single-nucleus RNA sequencing showed that MMP-7 was especially increased in proximal tubule and thick ascending limb cells, which were further characterized by a profibrotic phenotype. Together, these data suggest that MMP-7 is a biologically plausible and promising uEV biomarker for rapid disease progression in ADPKD. BACKGROUND: In ADPKD, there is an unmet need for early markers of rapid disease progression to facilitate counseling and selection for kidney-protective therapy. Our aim was to identify markers for rapid disease progression in uEVs. METHODS: Six paired case-control groups ( n =10-59/group) of cases with rapid disease progression and controls with stable disease were formed from two independent ADPKD cohorts, with matching by age, sex, total kidney volume, and genetic variant. Candidate uEV biomarkers were identified by mass spectrometry and further analyzed using immunoblotting and an ELISA. Single-nucleus RNA sequencing of healthy and ADPKD tissue was used to identify the cellular origin of the uEV biomarker. RESULTS: In the discovery proteomics experiments, the protein abundance of MMP-7 was significantly higher in uEVs of patients with rapid disease progression compared with stable disease. In the validation groups, a significant >2-fold increase in uEV-MMP-7 in patients with rapid disease progression was confirmed using immunoblotting. By contrast, no significant difference in MMP-7 was found in whole urine using ELISA. Compared with healthy kidney tissue, ADPKD tissue had significantly higher MMP-7 expression in proximal tubule and thick ascending limb cells with a profibrotic phenotype. CONCLUSIONS: Among patients with ADPKD, rapid disease progressors have higher uEV-associated MMP-7. Our findings also suggest that MMP-7 is a biologically plausible biomarker for more rapid disease progression.


Asunto(s)
Vesículas Extracelulares , Riñón Poliquístico Autosómico Dominante , Humanos , Biomarcadores , Progresión de la Enfermedad , Metaloproteinasa 7 de la Matriz , Riñón Poliquístico Autosómico Dominante/genética , Proteómica
4.
Transpl Infect Dis ; 26(1): e14233, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38180168

RESUMEN

BACKGROUND: Cytomegalovirus (CMV) infections are a common complication after kidney transplantation (KTx) and negatively affecting patient outcome. Valganciclovir (VGC) prophylaxis is often limited by drug-induced side effects and dose reduction due to decline in kidney function. METHOD: In the present study, episodes of CMV viremia in the first year after KTx in a cohort of 316 recipients were analyzed retrospectively to identify risk factors linked to persistent infections. RESULTS: In the studied cohort, 18.7% of patients showed a high-risk (HR) constellation (D+/R-) for CMV infections. CMV viremia affected 22% of our cohort, with HR patients being the most affected cohort (44.1%). Within this group, most viremic events (65.3%) occurred while patients were still on prophylactic therapy, showing significantly higher viral loads and a longer duration compared to seropositive recipients. CONCLUSION: The analysis at hand revealed that detection of viremia under ongoing antiviral prophylaxis bears an increased risk for sustained viral replication and antiviral drug resistance in HR patients. We identified low estimated glomerular filtration rate (eGFR) and lower dose VGC prophylaxis post-KTx as a risk factor for breakthrough infections in HR patients in our single center cohort. These patients might benefit from a closer CMV monitoring or novel prophylactic agents as letermovir.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Riñón , Humanos , Antivirales/uso terapéutico , Antivirales/farmacología , Citomegalovirus , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos , Viremia/tratamiento farmacológico , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/epidemiología , Infecciones por Citomegalovirus/prevención & control , Valganciclovir/uso terapéutico , Receptores de Trasplantes , Ganciclovir/uso terapéutico , Ganciclovir/farmacología
5.
J Am Soc Nephrol ; 34(5): 772-792, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758124

RESUMEN

SIGNIFICANCE STATEMENT: AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND: Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS: Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS: We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS: CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Humanos , Ratones , Animales , NAD/metabolismo , Restricción Calórica , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/metabolismo , Hipoxia
6.
Curr Opin Organ Transplant ; 29(4): 284-293, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861189

RESUMEN

PURPOSE OF REVIEW: The role of nutrition in organ health including solid organ transplantation is broadly accepted, but robust data on nutritional regimens remains scarce calling for further investigation of specific dietary approaches at the different stages of organ transplantation. This review gives an update on the latest insights into nutritional interventions highlighting the potential of specific dietary regimens prior to transplantation aiming for organ protection and the interplay between dietary intake and gut microbiota. RECENT FINDINGS: Nutrition holds the potential to optimize patients' health prior to and after surgery, it may enhance patients' ability to cope with the procedure-associated stress and it may accelerate their recovery from surgery. Nutrition helps to reduce morbidity and mortality in addition to preserve graft function. In the case of living organ donation, dietary preconditioning strategies promise novel approaches to limit ischemic organ damage during transplantation and to identify the underlying molecular mechanisms of diet-induced organ protection. Functioning gut microbiota are required to limit systemic inflammation and to generate protective metabolites such as short-chain fatty acids or hydrogen sulfide. SUMMARY: Nutritional intervention is a promising therapeutic concept including the pre- and rehabilitation stage in order to improve the recipients' outcome after solid organ transplantation.


Asunto(s)
Microbioma Gastrointestinal , Estado Nutricional , Trasplante de Órganos , Humanos , Trasplante de Órganos/efectos adversos , Resultado del Tratamiento , Animales , Supervivencia de Injerto
7.
Nat Immunol ; 12(9): 898-907, 2011 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-21841785

RESUMEN

Regulatory T cells (T(reg) cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (T(eff) cell) function and gain of suppressive activity by T(reg) cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of T(reg) cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3' untranslated region. Release of SATB1 from the control of Foxp3 in T(reg) cells caused loss of suppressive function, establishment of transcriptional T(eff) cell programs and induction of T(eff) cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining T(reg) cell functionality.


Asunto(s)
Ensamble y Desensamble de Cromatina/inmunología , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica , Proteínas de Unión a la Región de Fijación a la Matriz/inmunología , Autotolerancia , Linfocitos T Reguladores/inmunología , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/inmunología , Animales , Diferenciación Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Lentivirus , Activación de Linfocitos/efectos de los fármacos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/inmunología , MicroARNs/metabolismo , MicroARNs/farmacología , Interferencia de ARN , ARN Interferente Pequeño/inmunología , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Autotolerancia/efectos de los fármacos , Autotolerancia/genética , Autotolerancia/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Transducción Genética
8.
Rheumatology (Oxford) ; 62(10): 3459-3468, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752501

RESUMEN

OBJECTIVE: We describe a family with a novel mutation in the TNF Receptor Superfamily Member 1A (TNFRSF1A) gene causing TNF receptor-associated periodic syndrome (TRAPS) with renal AA amyloidosis. METHODS: Case series of affected family members. We further investigated the plasma metabolome of these patients in comparison with healthy controls using mass spectrometry. RESULTS: In all symptomatic family members, we detected the previously undescribed variant c.332A>G (p.Q111R) in the TNFRSF1A gene. Canakinumab proved an effective treatment option leading to remission in all treated patients. One patient with suspected renal amyloidosis showed near normalization of proteinuria under treatment. Analysis of the metabolome revealed 31 metabolic compounds to be upregulated and 35 compounds to be downregulated compared with healthy controls. The most dysregulated metabolites belonged to pathways identified as arginine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and cysteine and methionine metabolism. Interestingly, the metabolic changes observed in all three TRAPS patients seemed independent of treatment with canakinumab and subsequent remission. CONCLUSION: We present a novel mutation in the TNFRSF1A gene associated with amyloidosis. Canakinumab is an effective treatment for individuals with this new likely pathogenic variant. Alterations in the metabolome were most prominent in the pathways related to arginine biosynthesis, tryptophan metabolism, and metabolism of cysteine and methionine, and seemed to be unaffected by treatment with canakinumab. Further investigation is needed to determine the role of these metabolomic changes in the pathophysiology of TRAPS.


Asunto(s)
Amiloidosis , Fiebre Mediterránea Familiar , Humanos , Receptores del Factor de Necrosis Tumoral , Fiebre Mediterránea Familiar/tratamiento farmacológico , Fiebre Mediterránea Familiar/genética , Fiebre Mediterránea Familiar/complicaciones , Cisteína/genética , Triptófano , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Amiloidosis/complicaciones , Mutación , Metionina , Arginina
9.
Nephrol Dial Transplant ; 38(7): 1623-1635, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36423335

RESUMEN

BACKGROUND: Ketogenic dietary interventions (KDI) have been shown to be effective in animal models of polycystic kidney disease (PKD), but data from clinical trials are lacking. METHODS: Ten autosomal dominant PKD (ADPKD) patients with rapid disease progression were enrolled at visit V1 and initially maintained a carbohydrate-rich diet. At V2, patients entered one of the two KDI arms: a 3-day water fast (WF) or a 14-day ketogenic diet (KD). At V3, they resumed their normal diet for 3-6 weeks until V4. At each visit, magnetic resonance imaging kidney and liver volumetry was performed. Ketone bodies were evaluated to assess metabolic efficacy and questionnaires were used to determine feasibility. RESULTS: All participants [KD n = 5, WF n = 5; age 39.8 ± 11.6 years; estimated glomerular filtration rate 82 ± 23.5 mL/min/1.73 m2; total kidney volume (TKV) 2224 ± 1156 mL] were classified as Mayo Class 1C-1E. Acetone levels in breath and beta-hydroxybutyrate (BHB) blood levels increased in both study arms (V1 to V2 average acetone: 2.7 ± 1.2 p.p.m., V2 to V3: 22.8 ± 11.9 p.p.m., P = .0006; V1 to V2 average BHB: 0.22 ± 0.08 mmol/L, V2 to V3: 1.88 ± 0.93 mmol/L, P = .0008). Nine of 10 patients reached a ketogenic state and 9/10 evaluated KDIs as feasible. TKV did not change during this trial. However, we found a significant impact on total liver volume (ΔTLV V2 to V3: -7.7%, P = .01), mediated by changes in its non-cystic fraction. CONCLUSIONS: RESET-PKD demonstrates that short-term KDIs potently induce ketogenesis and are feasible for ADPKD patients in daily life. While TLV quickly changed upon the onset of ketogenesis, changes in TKV may require longer-term interventions.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Ácido 3-Hidroxibutírico/uso terapéutico , Acetona/uso terapéutico , Progresión de la Enfermedad , Tasa de Filtración Glomerular , Riñón/patología , Proyectos Piloto , Enfermedades Renales Poliquísticas/patología , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico
10.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768831

RESUMEN

Chronic Kidney Disease (CKD), a global health burden, is strongly associated with age-related renal function decline, hypertension, and diabetes, which are all frequent consequences of obesity. Despite extensive studies, the mechanisms determining susceptibility to CKD remain insufficiently understood. Clinical evidence together with prior studies from our group showed that perinatal metabolic disorders after intrauterine growth restriction or maternal obesity adversely affect kidney structure and function throughout life. Since obesity and aging processes converge in similar pathways we tested if perinatal obesity caused by high-fat diet (HFD)-fed dams sensitizes aging-associated mechanisms in kidneys of newborn mice. The results showed a marked increase of γH2AX-positive cells with elevated 8-Oxo-dG (RNA/DNA damage), both indicative of DNA damage response and oxidative stress. Using unbiased comprehensive transcriptomics we identified compartment-specific differentially-regulated signaling pathways in kidneys after perinatal obesity. Comparison of these data to transcriptomic data of naturally aged kidneys and prematurely aged kidneys of genetic modified mice with a hypomorphic allele of Ercc1, revealed similar signatures, e.g., inflammatory signaling. In a biochemical approach we validated pathways of inflammaging in the kidneys after perinatal obesity. Collectively, our initial findings demonstrate premature aging-associated processes as a consequence of perinatal obesity that could determine the susceptibility for CKD early in life.


Asunto(s)
Envejecimiento Prematuro , Insuficiencia Renal Crónica , Femenino , Ratones , Animales , Embarazo , Humanos , Envejecimiento Prematuro/metabolismo , Obesidad/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Dieta Alta en Grasa/efectos adversos , Envejecimiento/genética
11.
Kidney Int ; 102(3): 560-576, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35654224

RESUMEN

Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction--induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Restricción Calórica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacología , Riñón/metabolismo , Masculino , Ratones , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control
12.
Nephrol Dial Transplant ; 37(5): 825-839, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35134221

RESUMEN

Approval of the vasopressin V2 receptor antagonist tolvaptan-based on the landmark TEMPO 3:4 trial-marked a transformation in the management of autosomal dominant polycystic kidney disease (ADPKD). This development has advanced patient care in ADPKD from general measures to prevent progression of chronic kidney disease to targeting disease-specific mechanisms. However, considering the long-term nature of this treatment, as well as potential side effects, evidence-based approaches to initiate treatment only in patients with rapidly progressing disease are crucial. In 2016, the position statement issued by the European Renal Association (ERA) was the first society-based recommendation on the use of tolvaptan and has served as a widely used decision-making tool for nephrologists. Since then, considerable practical experience regarding the use of tolvaptan in ADPKD has accumulated. More importantly, additional data from REPRISE, a second randomized clinical trial (RCT) examining the use of tolvaptan in later-stage disease, have added important evidence to the field, as have post hoc studies of these RCTs. To incorporate this new knowledge, we provide an updated algorithm to guide patient selection for treatment with tolvaptan and add practical advice for its use.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Femenino , Humanos , Riñón , Masculino , Selección de Paciente , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Tolvaptán/uso terapéutico
13.
Infection ; 49(4): 725-737, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33851328

RESUMEN

PURPOSE: The ongoing pandemic caused by the novel severe acute respiratory coronavirus 2 (SARS-CoV-2) has stressed health systems worldwide. Patients with chronic kidney disease (CKD) seem to be more prone to a severe course of coronavirus disease (COVID-19) due to comorbidities and an altered immune system. The study's aim was to identify factors predicting mortality among SARS-CoV-2-infected patients with CKD. METHODS: We analyzed 2817 SARS-CoV-2-infected patients enrolled in the Lean European Open Survey on SARS-CoV-2-infected patients and identified 426 patients with pre-existing CKD. Group comparisons were performed via Chi-squared test. Using univariate and multivariable logistic regression, predictive factors for mortality were identified. RESULTS: Comparative analyses to patients without CKD revealed a higher mortality (140/426, 32.9% versus 354/2391, 14.8%). Higher age could be confirmed as a demographic predictor for mortality in CKD patients (> 85 years compared to 15-65 years, adjusted odds ratio (aOR) 6.49, 95% CI 1.27-33.20, p = 0.025). We further identified markedly elevated lactate dehydrogenase (> 2 × upper limit of normal, aOR 23.21, 95% CI 3.66-147.11, p < 0.001), thrombocytopenia (< 120,000/µl, aOR 11.66, 95% CI 2.49-54.70, p = 0.002), anemia (Hb < 10 g/dl, aOR 3.21, 95% CI 1.17-8.82, p = 0.024), and C-reactive protein (≥ 30 mg/l, aOR 3.44, 95% CI 1.13-10.45, p = 0.029) as predictors, while renal replacement therapy was not related to mortality (aOR 1.15, 95% CI 0.68-1.93, p = 0.611). CONCLUSION: The identified predictors include routinely measured and universally available parameters. Their assessment might facilitate risk stratification in this highly vulnerable cohort as early as at initial medical evaluation for SARS-CoV-2.


Asunto(s)
COVID-19/complicaciones , COVID-19/mortalidad , Insuficiencia Renal Crónica/complicaciones , SARS-CoV-2 , Adolescente , Adulto , Anciano de 80 o más Años , Estudios de Cohortes , Comorbilidad , Humanos , Modelos Logísticos , Persona de Mediana Edad , Insuficiencia Renal Crónica/inmunología , Factores de Riesgo , Adulto Joven
14.
J Am Soc Nephrol ; 31(4): 716-730, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32111728

RESUMEN

BACKGROUND: Although AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance. METHODS: To identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury. RESULTS: The gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI. CONCLUSIONS: This comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).


Asunto(s)
Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Restricción Calórica , Hipoxia , Precondicionamiento Isquémico/métodos , ARN Mensajero/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Animales , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética
15.
Int J Mol Sci ; 22(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067475

RESUMEN

Acute kidney injury (AKI) is a frequent and critical complication in the clinical setting. In rodents, AKI can be effectively prevented through caloric restriction (CR), which has also been shown to increase lifespan in many species. In Caenorhabditis elegans (C. elegans), longevity studies revealed that a marked CR-induced reduction of endocannabinoids may be a key mechanism. Thus, we hypothesized that regulation of endocannabinoids, particularly arachidonoyl ethanolamide (AEA), might also play a role in CR-mediated protection from renal ischemia-reperfusion injury (IRI) in mammals including humans. In male C57Bl6J mice, CR significantly reduced renal IRI and led to a significant decrease of AEA. Supplementation of AEA to near-normal serum concentrations by repetitive intraperitoneal administration in CR mice, however, did not abrogate the protective effect of CR. We also analyzed serum samples taken before and after CR from patients of three different pilot trials of dietary interventions. In contrast to mice and C. elegans, we detected an increase of AEA. We conclude that endocannabinoid levels in mice are modulated by CR, but CR-mediated renal protection does not depend on this effect. Moreover, our results indicate that modulation of endocannabinoids by CR in humans may differ fundamentally from the effects in animal models.


Asunto(s)
Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Endocannabinoides/metabolismo , Adulto , Anciano , Animales , Ácidos Araquidónicos/metabolismo , Caenorhabditis elegans/metabolismo , Restricción Calórica/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Riñón/metabolismo , Longevidad/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Alcamidas Poliinsaturadas/metabolismo , Daño por Reperfusión/metabolismo
16.
Pediatr Nephrol ; 35(7): 1143-1152, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31297585

RESUMEN

Cystic transformation of kidney tissue is a key feature of various disorders including autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and disorders of the nephronophthisis spectrum (NPH). While ARPKD and NPH typically affect children and adolescents, pediatric onset of ADPKD is less frequently found. While both ADPKD and ARPKD are characterized by formation of hundreds of cysts accompanied by hyperproliferation of tubular epithelia with massive renal enlargement, NPH patients usually show kidneys of normal or reduced size with cysts limited to the corticomedullary border. Recent results suggest the hippo pathway to be a central regulator at the crossroads of the renal phenotype in both diseases. Hippo signaling regulates organ size and proliferation by keeping the oncogenic transcriptional co-activators Yes associated protein 1 (YAP) and WW domain containing transcription regulator 1 (TAZ) in check. Once this inhibition is released, nuclear YAP/TAZ interacts with TEAD family transcription factors and the consecutive transcriptional activation of TEA domain family members (TEAD) target genes mediates an increase in proliferation. Here, we review the current knowledge on the impact of NPHP and ADPKD mutations on Hippo signaling networks. Furthermore, we provide an outlook towards potential future therapeutic strategies targeting Hippo signaling to alleviate cystic kidney disease.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Recesivo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Vía de Señalización Hippo , Humanos , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Recesivo/patología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
17.
J Am Soc Nephrol ; 30(4): 564-576, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30867249

RESUMEN

BACKGROUND: RNA-binding proteins (RBPs) are fundamental regulators of cellular biology that affect all steps in the generation and processing of RNA molecules. Recent evidence suggests that regulation of RBPs that modulate both RNA stability and translation may have a profound effect on the proteome. However, regulation of RBPs in clinically relevant experimental conditions has not been studied systematically. METHODS: We used RNA interactome capture, a method for the global identification of RBPs to characterize the global RNA-binding proteome (RBPome) associated with polyA-tailed RNA species in murine ciliated epithelial cells of the inner medullary collecting duct. To study regulation of RBPs in a clinically relevant condition, we analyzed hypoxia-associated changes of the RBPome. RESULTS: We identified >1000 RBPs that had been previously found using other systems. In addition, we found a number of novel RBPs not identified by previous screens using mouse or human cells, suggesting that these proteins may be specific RBPs in differentiated kidney epithelial cells. We also found quantitative differences in RBP-binding to mRNA that were associated with hypoxia versus normoxia. CONCLUSIONS: These findings demonstrate the regulation of RBPs through environmental stimuli and provide insight into the biology of hypoxia-response signaling in epithelial cells in the kidney. A repository of the RBPome and proteome in kidney tubular epithelial cells, derived from our findings, is freely accessible online, and may contribute to a better understanding of the role of RNA-protein interactions in kidney tubular epithelial cells, including the response of these cells to hypoxia.


Asunto(s)
Células Epiteliales/metabolismo , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Proteoma/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular , Hipoxia de la Célula/fisiología , Cilios/metabolismo , Células HEK293 , Humanos , Ratones , Unión Proteica
18.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32847032

RESUMEN

Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.


Asunto(s)
Terapia Molecular Dirigida/tendencias , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/metabolismo , Humanos , Metaboloma/fisiología , Terapia Molecular Dirigida/métodos , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Recesivo/tratamiento farmacológico , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/metabolismo
19.
Kidney Int ; 95(4): 733-735, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30904059

RESUMEN

Clark et al. present a curated knowledge-based census of 43 known canonical kidney cell types, based on calculated contribution to total kidney mass and expression of molecular markers. Their study illustrates limitations of bulk transcriptomics but also provides guidance to their fruitful interpretation. In the light of their findings, the use of bulk sequencing datasets in conjunction with single-cell transcriptomics could contribute to the exploitation of integrative omics analyses in kidney research.


Asunto(s)
Censos , ARN , Biomarcadores , Riñón
20.
Kidney Int ; 95(4): 846-858, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30770218

RESUMEN

Recent human genetic studies have suggested an intriguing link between ciliary signaling defects and altered DNA damage responses in nephronophthisis (NPH) and related ciliopathies. However, the molecular mechanism and the role of altered DNA damage response in kidney degeneration and fibrosis have remained elusive. We recently identified the kinase-regulated DNA damage response target Apoptosis Antagonizing Transcription Factor (AATF) as a master regulator of the p53 response. Here, we characterized the phenotype of mice with genetic deletion of Aatf in tubular epithelial cells. Mice were born without an overt phenotype, but gradually developed progressive kidney disease. Histology was notable for severe tubular atrophy and interstitial fibrosis as well as cysts at the corticomedullary junction, hallmarks of human nephronophthisis. Aatf deficiency caused ciliary defects as well as an accumulation of DNA double strand breaks. In addition to its role as a p53 effector, we found that AATF suppressed RNA:DNA hybrid (R loop) formation, a known cause of DNA double strand breaks, and enabled DNA double strand break repair in vitro. Genome-wide transcriptomic analysis of Aatf deficient tubular epithelial cells revealed several deregulated pathways that could contribute to the nephronophthisis phenotype, including alterations in the inflammatory response and anion transport. These results suggest that AATF is a regulator of primary cilia and a modulator of the DNA damage response, connecting two pathogenetic mechanisms in nephronophthisis and related ciliopathies.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Cilios/patología , Roturas del ADN de Doble Cadena , Enfermedades Renales Quísticas/genética , Túbulos Renales/patología , Proteínas Nucleares/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Biopsia , Línea Celular Tumoral , Cilios/genética , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/patología , Fibrosis , Humanos , Enfermedades Renales Quísticas/patología , Túbulos Renales/citología , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Cultivo Primario de Células , Estructuras R-Loop/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA