Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chaos ; 30(8): 083117, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32872842

RESUMEN

In this paper, we use the parameterization method to provide a complete description of the dynamics of an n-dimensional oscillator beyond the classical phase reduction. The parameterization method allows us, via efficient algorithms, to obtain a parameterization of the attracting invariant manifold of the limit cycle in terms of the phase-amplitude variables. The method has several advantages. It provides analytically a Fourier-Taylor expansion of the parameterization up to any order, as well as a simplification of the dynamics that allows for a numerical globalization of the manifolds. Thus, one can obtain the local and global isochrons and isostables, including the slow attracting manifold, up to high accuracy, which offer a geometrical portrait of the oscillatory dynamics. Furthermore, it provides straightforwardly the infinitesimal phase and amplitude response functions, that is, the extended infinitesimal phase and amplitude response curves, which monitor the phase and amplitude shifts beyond the asymptotic state. Thus, the methodology presented yields an accurate description of the phase dynamics for perturbations not restricted to the limit cycle but to its attracting invariant manifold. Finally, we explore some strategies to reduce the dimension of the dynamics, including the reduction of the dynamics to the slow stable submanifold. We illustrate our methods by applying them to different three-dimensional single neuron and neural population models in neuroscience.

2.
J Math Neurosci ; 9(1): 7, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31385150

RESUMEN

We study the dynamics arising when two identical oscillators are coupled near a Hopf bifurcation where we assume a parameter ϵ uncouples the system at [Formula: see text]. Using a normal form for [Formula: see text] identical systems undergoing Hopf bifurcation, we explore the dynamical properties. Matching the normal form coefficients to a coupled Wilson-Cowan oscillator network gives an understanding of different types of behaviour that arise in a model of perceptual bistability. Notably, we find bistability between in-phase and anti-phase solutions that demonstrates the feasibility for synchronisation to act as the mechanism by which periodic inputs can be segregated (rather than via strong inhibitory coupling, as in the existing models). Using numerical continuation we confirm our theoretical analysis for small coupling strength and explore the bifurcation diagrams for large coupling strength, where the normal form approximation breaks down.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA