Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777873

RESUMEN

Controlling topological phases of light allows the observation of abundant topological phenomena and the development of robust photonic devices. The prospect of more sophisticated control with topological photonic devices for practical implementations requires high-level programmability. Here we demonstrate a fully programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators. Photonic artificial atoms and their interactions in our compound system can be individually addressed and controlled, allowing the arbitrary adjustment of structural parameters and geometrical configurations for the observation of dynamic topological phase transitions and diverse photonic topological insulators. Individual programming of artificial atoms on the generic chip enables the comprehensive statistical characterization of topological robustness against relatively weak disorders, and counterintuitive topological Anderson phase transitions induced by strong disorders. This generic topological photonic chip can be rapidly reprogrammed to implement multifunctionalities, providing a flexible and versatile platform for applications across fundamental science and topological technologies.

2.
Haematologica ; 109(2): 567-577, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37496441

RESUMEN

Multiple myeloma is a heterogeneous hematological disease that originates from the bone marrow and is characterized by the monoclonal expansion of malignant plasma cells. Despite novel therapies, multiple myeloma remains clinically challenging. A common feature among patients with poor prognosis is the increased activity of the epigenetic silencer EZH2, which is the catalytic subunit of the PRC2. Interestingly, the recruitment of PRC2 lacks sequence specificity and, to date, the molecular mechanisms that define which genomic locations are destined for PRC2-mediated silencing remain unknown. The presence of a long non-coding RNA (lncRNA)-binding pocket on EZH2 suggests that lncRNA could potentially mediate PRC2 recruitment to specific genomic regions. Here, we coupled RNA immunoprecipitation sequencing, RNA-sequencing and chromatin immunoprecipitation-sequencing analysis of human multiple myeloma primary cells and cell lines to identify potential lncRNA partners to EZH2. We found that the lncRNA plasmacytoma variant translocation 1 (PVT1) directly interacts with EZH2 and is overexpressed in patients with a poor prognosis. Moreover, genes predicted to be targets of PVT1 exhibited H3K27me3 enrichment and were associated with pro-apoptotic and tumor suppressor functions. In fact, PVT1 inhibition independently promotes the expression of the PRC2 target genes ZBTB7C, RNF144A and CCDC136. Altogether, our work suggests that PVT1 is an interacting partner in PRC2-mediated silencing of tumor suppressor and pro-apoptotic genes in multiple myeloma, making it a highly interesting potential therapeutic target.


Asunto(s)
Mieloma Múltiple , ARN Largo no Codificante , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Proteína Potenciadora del Homólogo Zeste 2/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Genómica , Péptidos y Proteínas de Señalización Intracelular
3.
Nat Chem Biol ; 16(2): 214-222, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31819273

RESUMEN

The enhancer of zeste homolog 2 (EZH2) is the main enzymatic subunit of the PRC2 complex, which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to promote transcriptional silencing. EZH2 is overexpressed in multiple types of cancer including triple-negative breast cancer (TNBC), and high expression levels correlate with poor prognosis. Several EZH2 inhibitors, which inhibit the methyltransferase activity of EZH2, have shown promise in treating sarcoma and follicular lymphoma in clinics. However, EZH2 inhibitors are ineffective at blocking proliferation of TNBC cells, even though they effectively reduce the H3K27me3 mark. Using a hydrophobic tagging approach, we generated MS1943, a first-in-class EZH2 selective degrader that effectively reduces EZH2 levels in cells. Importantly, MS1943 has a profound cytotoxic effect in multiple TNBC cells, while sparing normal cells, and is efficacious in vivo, suggesting that pharmacologic degradation of EZH2 can be advantageous for treating the cancers that are dependent on EZH2.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Piperazinas/farmacología , Piridinas/farmacología , Animales , Antineoplásicos/farmacocinética , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Técnicas de Inactivación de Genes , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Ratones Endogámicos BALB C , Terapia Molecular Dirigida , Proteolisis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Genomics ; 113(4): 2400-2412, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887365

RESUMEN

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are well-known viral RNA sensors in the cytoplasm. RIG-I-mediated antiviral signals are activated by interacting with the adapter protein mitochondrial antiviral signaling (MAVS), which triggers interferon (IFN) responses via a signaling cascade. Although the complete RIG-I receptor signaling pathway has been traced back to teleosts, definitive evidence of its presence in lampreys is lacking. Here, we identified 13 pivotal molecules in the RIG-I signaling pathway in lamprey, and demonstrated that the original RIG-I/MAVS signaling pathway was activated and mediated the expression of unique immunity factors such as RRP4, to inhibit viral proliferation after viral infection in vivo and in vitro. This study confirmed the conservation of the RIG-I pathway, and the uniqueness of the RRP4 effector molecule in lamprey, and further clarified the evolutionary process of the RIG-I antiviral signaling pathway, providing evidence on the origins of innate antiviral immunity in vertebrates.


Asunto(s)
Antivirales , Lampreas , Animales , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Genómica , Inmunidad Innata , Lampreas/genética , Lampreas/metabolismo , Transducción de Señal
5.
Blood ; 134(14): 1176-1189, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31383640

RESUMEN

Dysregulation of polycomb repressive complex 2 (PRC2) promotes oncogenesis partly through its enzymatic function for inducing trimethylation of histone H3 lysine 27 (H3K27me3). However, it remains to be determined how PRC2 activity is regulated in normal and diseased settings. We here report a PRC2-associated cofactor, PHD finger protein 19 (PHF19; also known as polycomb-like 3), as a crucial mediator of tumorigenicity in multiple myeloma (MM). Overexpression and/or genomic amplification of PHF19 is found associated with malignant progression of MM and plasma cell leukemia, correlating to worse treatment outcomes. Using various MM models, we demonstrated a critical requirement of PHF19 for tumor growth in vitro and in vivo. Mechanistically, PHF19-mediated oncogenic effect relies on its PRC2-interacting and chromatin-binding functions. Chromatin immunoprecipitation followed by sequencing profiling showed a critical role for PHF19 in maintaining the H3K27me3 landscape. PHF19 depletion led to loss of broad H3K27me3 domains, possibly due to impaired H3K27me3 spreading from cytosine guanine dinucleotide islands, which is reminiscent to the reported effect of an "onco"-histone mutation, H3K27 to methionine (H3K27M). RNA-sequencing-based transcriptome profiling in MM lines also demonstrated a requirement of PHF19 for optimal silencing of PRC2 targets, which include cell cycle inhibitors and interferon-JAK-STAT signaling genes critically involved in tumor suppression. Correlation studies using patient sample data sets further support a clinical relevance of the PHF19-regulated pathways. Lastly, we show that MM cells are generally sensitive to PRC2 inhibitors. Collectively, this study demonstrates that PHF19 promotes MM tumorigenesis through enhancing H3K27me3 deposition and PRC2's gene-regulatory functions, lending support for PRC2 blockade as a means for MM therapeutics.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Mieloma Múltiple/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/metabolismo , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Humanos , Metilación , Ratones , Mieloma Múltiple/patología
6.
Circ Res ; 122(2): 231-245, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29233846

RESUMEN

RATIONALE: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. OBJECTIVE: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. METHODS AND RESULTS: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and ß-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/ß-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. CONCLUSIONS: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system.


Asunto(s)
Antígenos CD/biosíntesis , Cadherinas/biosíntesis , Endotelio Vascular/metabolismo , Epigénesis Genética/fisiología , Animales , Antígenos CD/genética , Cadherinas/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Endotelio Vascular/ultraestructura , Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica/fisiología
7.
Fish Shellfish Immunol ; 98: 988-994, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31712129

RESUMEN

Complement factor I (CFI) is a serine protease which plays a key role in the modulation of complement system and the induced-fit factor responsible for controlling the complement-mediated processes. In this study, a CFI gene was cloned and characterized from Lampetra morii (designated as L-CFI) at molecular and cellular levels. The L-CFI protein included a factor I membrane attack complex domain (FIMAC), a scavenger receptor cysteine-rich domain (SRCR), a trypsin-like serine protease domain (Tryp_SPc) and 2 low-density lipoprotein receptor class A domains (LDLa) which would exhibit functional similarities to CFI superfamily proteins. Tissue expression profile analysis showed that L-CFI mRNA constitutively expressed in all tested tissues except erythrocytes, with the predominant expression in liver. The mRNA expression level of L-CFI increased significantly after Vibrio anguillarum and Staphylocccus aureus stimulation. It is demonstrated that L-CFI interacted with L-C3 protein and affected the deposition of L-C3 on the cell surface. Furthermore, lamprey serum after deplete L-CFI and L-C3 reduced the cytotoxic activity against HeLa cells. These findings suggest that L-CFI plays an important role in lamprey immunity and involved in the lamprey complement system.


Asunto(s)
Activación de Complemento/inmunología , Factor I de Complemento/genética , Proteínas de Peces/genética , Inmunidad Innata/genética , Lampreas/genética , Lampreas/inmunología , Secuencia de Aminoácidos , Animales , Factor I de Complemento/química , Factor I de Complemento/metabolismo , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Alineación de Secuencia
8.
Cancer Sci ; 110(12): 3695-3707, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31571328

RESUMEN

Polycomb repressive complex 2 (PRC2) components, EZH2 and its homolog EZH1, and PI3K/Akt signaling pathway are focal points as therapeutic targets for multiple myeloma. However, the exact crosstalk between their downstream targets remains unclear. We herein elucidated some epigenetic interactions following Akt inhibition and demonstrated the efficacy of the combined inhibition of Akt and PRC2. We found that TAS-117, a potent and selective Akt inhibitor, downregulated EZH2 expression at the mRNA and protein levels via interference with the Rb-E2F pathway, while EZH1 was compensatively upregulated to maintain H3K27me3 modifications. Consistent with these results, the dual EZH2/EZH1 inhibitor, UNC1999, but not the selective EZH2 inhibitor, GSK126, synergistically enhanced TAS-117-induced cytotoxicity and provoked myeloma cell apoptosis. RNA-seq analysis revealed the activation of the FOXO signaling pathway after TAS-117 treatment. FOXO3/4 mRNA and their downstream targets were upregulated with the enhanced nuclear localization of FOXO3 protein after TAS-117 treatment. ChIP assays confirmed the direct binding of FOXO3 to EZH1 promoter, which was enhanced by TAS-117 treatment. Moreover, FOXO3 knockdown repressed EZH1 expression. Collectively, the present results reveal some molecular interactions between Akt signaling and epigenetic modulators, which emphasize the benefits of targeting PRC2 full activity and the Akt pathway as a therapeutic option for multiple myeloma.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Sinergismo Farmacológico , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Proteína Forkhead Box O3/fisiología , Humanos , Mieloma Múltiple/patología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/fisiología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/fisiología , Piridonas/uso terapéutico
9.
Blood ; 129(20): 2737-2748, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28246193

RESUMEN

Modulating T-cell alloreactivity has been a main strategy to reduce graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem-cell transplantation (HSCT). Genetic deletion of T-cell Ezh2, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3), inhibits GVHD. Therefore, reducing Ezh2-mediated H3K27me3 is thought to be essential for inhibiting GVHD. We tested this hypothesis in mouse GVHD models. Unexpectedly, administration of the Ezh2 inhibitor GSK126, which specifically decreases H3K27me3 without affecting Ezh2 protein, failed to prevent the disease. In contrast, destabilizing T-cell Ezh2 protein by inhibiting Hsp90 using its specific inhibitor AUY922 reduced GVHD in mice undergoing allogeneic HSCT. In vivo administration of AUY922 selectively induced apoptosis of activated T cells and decreased the production of effector cells producing interferon γ and tumor necrosis factor α, similar to genetic deletion of Ezh2. Introduction of Ezh2 into alloreactive T cells restored their expansion and production of effector cytokines upon AUY922 treatment, suggesting that impaired T-cell alloreactivity by inhibiting Hsp90 is achieved mainly through depleting Ezh2. Mechanistic analysis revealed that the enzymatic SET domain of Ezh2 directly interacted with Hsp90 to prevent Ezh2 from rapid degradation in activated T cells. Importantly, pharmacological inhibition of Hsp90 preserved antileukemia activity of donor T cells, leading to improved overall survival of recipient mice after allogeneic HSCT. Our findings identify the Ezh2-Hsp90 interaction as a previously unrecognized mechanism essential for T-cell responses and an effective target for controlling GVHD.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Linfocitos T/inmunología , Animales , Proteína Potenciadora del Homólogo Zeste 2/química , Proteínas HSP90 de Choque Térmico/metabolismo , Hematopoyesis/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas , Histonas/metabolismo , Indoles/farmacología , Isoxazoles/farmacología , Lisina/metabolismo , Metilación/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor/metabolismo , Dominios Proteicos , Estabilidad Proteica/efectos de los fármacos , Piridonas/farmacología , Resorcinoles/farmacología , Linfocitos T/efectos de los fármacos , Trasplante Homólogo
10.
Blood ; 125(2): 346-57, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25395428

RESUMEN

Enhancer of zeste homolog 2 (EZH2) and related EZH1 control gene expression and promote tumorigenesis via methylating histone H3 at lysine 27 (H3K27). These methyltransferases are ideal therapeutic targets due to their frequent hyperactive mutations and overexpression found in cancer, including hematopoietic malignancies. Here, we characterized a set of small molecules that allow pharmacologic manipulation of EZH2 and EZH1, which include UNC1999, a selective inhibitor of both enzymes, and UNC2400, an inactive analog compound useful for assessment of off-target effect. UNC1999 suppresses global H3K27 trimethylation/dimethylation (H3K27me3/2) and inhibits growth of mixed lineage leukemia (MLL)-rearranged leukemia cells. UNC1999-induced transcriptome alterations overlap those following knockdown of embryonic ectoderm development, a common cofactor of EZH2 and EZH1, demonstrating UNC1999's on-target inhibition. Mechanistically, UNC1999 preferentially affects distal regulatory elements such as enhancers, leading to derepression of polycomb targets including Cdkn2a. Gene derepression correlates with a decrease in H3K27me3 and concurrent gain in H3K27 acetylation. UNC2400 does not induce such effects. Oral administration of UNC1999 prolongs survival of a well-defined murine leukemia model bearing MLL-AF9. Collectively, our study provides the detailed profiling for a set of chemicals to manipulate EZH2 and EZH1 and establishes specific enzymatic inhibition of polycomb repressive complex 2 (PRC2)-EZH2 and PRC2-EZH1 by small-molecule compounds as a novel therapeutics for MLL-rearranged leukemia.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Bifenotípica Aguda/enzimología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Animales , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2 , Inhibidores Enzimáticos/farmacología , Immunoblotting , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Insect Biochem Mol Biol ; 164: 104047, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072082

RESUMEN

The non-neuronal cholinergic system, widely distributed in nature, is an ancient system that has not been well studied in insects. This study aims to investigate the key components of the cholinergic system and to identify the non-neuronal acetylcholine (ACh)-producing cells and the acting sites of ACh in the Malpighian tubules (MTs) of Mythimna separata. We found that non-neuronal ACh in MTs is synthesized by carnitine acetyltransferase (CarAT), rather than choline acetyltransferase (ChAT), as confirmed by using enzyme inhibitors and high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Fluorescence in situ hybridization revealed the presence of CarAT mRNA within MTs, specifically localized in the principal cells. Immunohistochemistry showed strong staining for A-mAChR, a muscarinic acetylcholine receptor, in the principal cells. Pharmacological analysis further demonstrated that ACh acts through A-mAChR in the principal cells to increase the intracellular Ca2+ concentration. These findings provide compelling evidence for the existence of a non-neuronal cholinergic system in the MTs of M. separata, and the principal cells play a crucial role in ACh synthesis via CarAT.


Asunto(s)
Acetilcolina , Sistema Colinérgico no Neuronal , Animales , Acetilcolina/farmacología , Túbulos de Malpighi/metabolismo , Hibridación Fluorescente in Situ , Espectrometría de Masas en Tándem
12.
Plants (Basel) ; 12(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840065

RESUMEN

Climate warming poses a great threat to ecosystems worldwide, which significantly affects the geographical distribution and suitable growth area of species. Taking Castanopsis hystrix Miq. as the research object, the potentially suitable cultivation regions under present and future climatic emission scenarios in China were predicted based on the MaxEnt model with 360 effective individual distributions and eight environmental variables. The min temperature of coldest month (bio6), precipitation of driest month (bio14), and precipitation of warmest quarter (bio18) are three leading factors affecting the geographical distribution area of C. hystrix Miq. The suitable cultivation regions of C. hystrix Miq. range from 18°-34° N, 89°-122° E in central and southern China and cover an area of 261.95 × 104 km2. The spatial pattern of C. hystrix Miq. will migrate to the southern region of low latitudes with a decreasing suitable area when in ssp1-2.6, and to the southwestern region of low latitudes or expand to the northeast region at high latitudes in ssp5-8.5, with an increasing suitable area; no significant change on the spatial pattern in ssp2-2.4. For ssp1-2.6 or ssp2-4.5 climate scenarios, the southern region of high latitudes will be appropriate for introducing and cultivating C. hystrix Miq., and the cultivation area will increase. For ssp5-8.5, its cultivation will increase and expand to the northeast of high-latitude areas slightly.

13.
JMIR Res Protoc ; 12: e46054, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37247222

RESUMEN

BACKGROUND: Clinical rehabilitation for brachial plexus injury is difficult in terms of chronic pain and dysfunction. Physiotherapy is considered a routine intervention for rehabilitation. Common physical therapy may require a variety of instruments. One approach that does not need instruments, but belongs to the field of complementary and alternative medicine, is naprapathy. Naprapathy, also called Tuina in China, has been applied in rehabilitation after brachial plexus injury for a long time. Naprapathy can relieve chronic neuropathic pain, promote local blood circulation, and improve body edema. Naprapathy can passively help improve motor functions in patients with peripheral nerve injury. However, the efficacy of naprapathy in improving rehabilitation after brachial plexus injury is unclear. OBJECTIVE: This study aims to evaluate the additional value of naprapathy when combined with conventional physical therapy for the treatment of brachial plexus injury. METHODS: This will be a single-center randomized controlled trial. A total of 116 eligible patients with brachial plexus injury will be randomly divided into an experimental group (naprapathy plus physical therapy group) or a control group (physical therapy group). The participants will be followed up for 4 weeks of treatment. Observation outcomes will include the visual analog scale score, upper limb index, electromyography findings, and adverse reactions, among others. The measuring points for outcomes will be the baseline and the completion of treatment. In addition, a quality control group independent from the research team will be set up to control the quality of the trial. Finally, the data will be analyzed using SPSS software (version 21.0; IBM Corp). RESULTS: The study is recruiting participants. The first participant was enrolled in September 2021. As of January 2023, a total of 100 participants have been enrolled. The trial is expected to be completed by September 2023. The study protocol was approved by the Ethics Review Committee of Yue Yang Hospital affiliated with the Shanghai University of Traditional Chinese Medicine (2021-012). CONCLUSIONS: One limitation of this trial is that we will be unable to achieve strict double-blinding because of the features of naprapathy. The trial aims to contribute reliable evidence for decision-making in naprapathy for treating brachial plexus injury. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100043515; http://www.chictr.org.cn/showproj.aspx?proj=122154. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/46054.

14.
Oncogene ; 42(13): 994-1009, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36747009

RESUMEN

Multiple myeloma (MM) is the second most common hematological malignancy with poor prognosis. Enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of polycomb repressive complex 2 (PRC2), which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) for transcriptional repression. EZH2 have been implicated in numerous hematological malignancies, including MM. However, noncanonical functions of EZH2 in MM tumorigenesis are not well understood. Here, we uncovered a noncanonical function of EZH2 in MM malignancy. In addition to the PRC2-mediated and H3K27me3-dependent canonical function, EZH2 interacts with cMyc and co-localizes with gene activation-related markers, promoting MM tumorigenesis in a PRC2- and H3K27me3-independent manner. Both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes can be effectively depleted in MM cells by MS177, an EZH2 degrader we reported previously, leading to profound activation of EZH2-PRC2-associated genes and simultaneous suppression of EZH2-cMyc oncogenic nodes. The MS177-induced degradation of both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes also reactivated immune response genes in MM cells. Phenotypically, targeting of EZH2's both canonical and noncanonical functions by MS177 effectively suppressed the proliferation of MM cells both in vitro and in vivo. Collectively, this study uncovers a new noncanonical function of EZH2 in MM tumorigenesis and provides a novel therapeutic strategy, pharmacological degradation of EZH2, for treating EZH2-dependent MM.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Mieloma Múltiple , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/metabolismo , Mieloma Múltiple/genética , Línea Celular Tumoral , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Carcinogénesis , Transformación Celular Neoplásica
15.
Int Immunopharmacol ; 118: 110068, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37001386

RESUMEN

Enhancer of zeste homolog 2 (EZH2), a core component of polycomb repressive component 2 is overexpressed in a variety of cancers and recognized as a therapeutic target molecule. However, EZH2 possesses immunomodulatory functions in the tumor microenvironment (TME). The impact of EZH2 on TME of hepatocellular carcinoma (HCC) using immunocompetent mouse model was evaluated in the present study. UNC1999, an EZH2 inhibitor, impaired growth of the murine HCC cells (H22 cells) and induced apoptosis in a dose-dependent manner. Although UNC1999 significantly inhibited the growth of H22 cells-derived and Hepa1-6 cells-derived tumors in nonobese diabetic/severe combined immunodeficiency mice, its antitumor effect was diminished in allogenic BALB/c and C57BL/6 mice. Flow cytometric analyses of TME cells in BALB/c mice demonstrated a significant decrease in the number of interferon­Î³+ CD8+ T cells and regulatory T cells and a significant increase in the number of myeloid-derived suppressor cells (MDSCs). Administration of Gr-1 neutralizing antibody concomitant with UNC1999 restored antitumor effect accompanied by an increase in the number of CD8+ T cells followed by a decrease in the number of MDSCs. Chemokine antibody array demonstrated an enhanced expression of chemokines responsible for MDSCs recruitment such as C5a, CCL8, and CCL9. In conclusion, the study results demonstrated that EZH2 inhibitor contributed to attenuation of tumor immunity caused by TME arrangement. Combination therapy with EZH2 inhibitors and agents that reduce MDSCs might represent a novel therapeutic strategy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias Hepáticas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Microambiente Tumoral , Ratones Endogámicos C57BL , Ratones Endogámicos , Inhibidores Enzimáticos/uso terapéutico , Línea Celular Tumoral
16.
Pest Manag Sci ; 78(12): 5220-5233, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36053883

RESUMEN

BACKGROUND: Acetylcholine (ACh), as a classical neurotransmitter, plays great roles in the nervous system. There is increasing evidence of its non-neuronal roles in regulating basic cell functions in vertebrates. However, knowledge about the non-neuronal cholinergic system in insects is scarce. RESULTS: A comparative transcriptome analysis was performed to investigate differences in the key molecular components of the cholinergic system between the head and ovary. The results showed that expression levels of most cholinergic system-related genes were higher in the head than in the ovary, and some cholinergic components were absent in the ovary. ACh contents ranged from 0.1 to 1.3 µg mg-1 of wet weight during the development of the ovary, and weak acetylcholinesterase activity was also detected. Moreover, the ovary has a capacity for ACh synthesis. Bromoacetylcarnitine (BrACar), a specific carnitine acetyltransferase (CarAT) inhibitor, greatly inhibits ACh synthesis by 83.83% in ovary homogenates, but bromoacetylcholine (BrACh), a specific choline acetyltransferase (ChAT) inhibitor, has no effect on ACh synthesis in the ovary. These findings indicate that non-neuronal ACh in the ovary is only catalyzed by CarAT. CONCLUSION: This study reveals the existence of the non-neuronal cholinergic system in the ovary of M. separata, whose synthesis and release mechanisms are different from those of the head. These results provide novel insights into the non-neuronal cholinergic system in insects, and will be valuable in the discovery of new target genes and the future development of green pest control. © 2022 Society of Chemical Industry.


Asunto(s)
Mariposas Nocturnas , Sistema Colinérgico no Neuronal , Animales , Femenino , Spodoptera/metabolismo , Ovario/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacología , Perfilación de la Expresión Génica , Colinérgicos/metabolismo
17.
ACS Pharmacol Transl Sci ; 5(7): 491-507, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35837138

RESUMEN

Enhancer of zeste homolog 2 (EZH2), a catalytic subunit of polycomb repressive complex 2 (PRC2), is overexpressed in triple-negative breast cancer (TNBC), correlating with poor prognosis. However, EZH2 catalytic inhibitors are ineffective in suppressing the growth of TNBC cells that are dependent on EZH2. Knockdown of EZH2 inhibits the proliferation of these cells, suggesting that EZH2 protein overexpression but not its catalytic activity is critical for driving TNBC progression. Several proteolysis targeting chimera (PROTAC) degraders of EZH2, including the von Hippel-Lindau (VHL)-recruiting PROTAC YM281, have been reported. However, the effects of these EZH2 PROTACs in TNBC cells were not investigated. Here, we report the discovery and characterization of a novel, potent, and selective EZH2 PROTAC degrader, MS8815 (compound 16), which induced robust EZH2 degradation in a concentration-, time-, and proteasome-dependent manner in TNBC cells. Importantly, 16 effectively suppressed the cell growth in multiple TNBC cell lines and primary patient TNBC cells.

18.
Nat Cell Biol ; 24(3): 384-399, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35210568

RESUMEN

Canonically, EZH2 serves as the catalytic subunit of PRC2, which mediates H3K27me3 deposition and transcriptional repression. Here, we report that in acute leukaemias, EZH2 has additional noncanonical functions by binding cMyc at non-PRC2 targets and uses a hidden transactivation domain (TAD) for (co)activator recruitment and gene activation. Both canonical (EZH2-PRC2) and noncanonical (EZH2-TAD-cMyc-coactivators) activities of EZH2 promote oncogenesis, which explains the slow and ineffective antitumour effect of inhibitors of the catalytic function of EZH2. To suppress the multifaceted activities of EZH2, we used proteolysis-targeting chimera (PROTAC) to develop a degrader, MS177, which achieved effective, on-target depletion of EZH2 and interacting partners (that is, both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes). Compared with inhibitors of the enzymatic function of EZH2, MS177 is fast-acting and more potent in suppressing cancer growth. This study reveals noncanonical oncogenic roles of EZH2, reports a PROTAC for targeting the multifaceted tumorigenic functions of EZH2 and presents an attractive strategy for treating EZH2-dependent cancers.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias , Carcinogénesis/genética , Proteínas del Citoesqueleto/metabolismo , Proteína p300 Asociada a E1A , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Proteolisis , Activación Transcripcional
19.
J Med Chem ; 65(19): 12895-12924, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36127295

RESUMEN

General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound 39 engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID. We also demonstrate the ability of compound 39 to alleviate MDSC-related T cell suppression and restore T cell proliferation, similar to the effect seen in MDSCs from GCN2 knockout mice. In the LL2 syngeneic mouse model, compound 39 demonstrates significant tumor growth inhibition (TGI) as a single agent. Furthermore, TGI mediated by anti-VEGFR was enhanced by treatment with compound 39 demonstrating the complementarity of these two mechanisms.


Asunto(s)
Células Supresoras de Origen Mieloide , eIF-2 Quinasa , Animales , Hemo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Linfocitos T/metabolismo , eIF-2 Quinasa/metabolismo
20.
Front Cell Dev Biol ; 9: 674939, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277616

RESUMEN

During the process of vertebrate evolution, many thermogenic organs and mechanisms have appeared. Mammalian brown adipose tissue (BAT) generates heat through the uncoupling oxidative phosphorylation of mitochondria, acts as a natural defense against hypothermia and inhibits the development of obesity. Although the existence, cellular origin and molecular identity of BAT in humans have been well studied, the genetic and functional characteristics of BAT from lampreys remain unknown. Here, we identified and characterized a novel, naturally existing brown-like adipocytes at the lamprey brain periphery. Similar to human BAT, the lamprey brain periphery contains brown-like adipocytes that maintain the same morphology as human brown adipocytes, containing multilocular lipid droplets and high mitochondrion numbers. Furthermore, we found that brown-like adipocytes in the periphery of lamprey brains responded to thermogenic reagent treatment and cold exposure and that lamprey UCP2 promoted precursor adipocyte differentiation. Molecular mapping by RNA-sequencing showed that inflammation in brown-like adipocytes treated with LPS and 25HC was enhanced compared to controls. The results of this study provide new evidence for human BAT research and demonstrate the multilocular adipose cell functions of lampreys, including: (1) providing material energy and protecting structure, (2) generating additional heat and contributing to adaptation to low-temperature environments, and (3) resisting external pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA