Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 16(2): 5013, 2015 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103174

RESUMEN

This paper investigates the clinical significance of real-time monitoring of intrafractional prostate motion during external beam radiotherapy using a commercial 4D localization system. Intrafractional prostate motion was tracked during 8,660 treatment fractions for 236 patients. The following statistics were analyzed: 1) the percentage of fractions in which the prostate shifted 2-7 mm for a certain duration; 2) the proportion of the entire tracking time during which the prostate shifted 2-7mm; and 3) the proportion of each minute in which the shift exceeded 2-7 mm. The ten patients exhibiting maximum intrafractional-motion patterns were analyzed separately. Our results showed that the percentage of fractions in which the prostate shifted by > 2, 3, 5, and 7 mm off the baseline in any direction for > 30 s was 56.8%, 27.2%, 4.6%, and 0.7% for intact prostate and 68.7%, 35.6%, 10.1%, and 1.8% for postprostatectomy patients, respectively. For the ten patients, these percentages were 91.3%, 72.4%, 36.3%, and 6%, respectively. The percentage of tracking time during which the prostate shifted > 2, 3, 5, and 7 mm was 27.8%, 10.7%, 1.6%, and 0.3%, respectively, and it was 56.2%, 33.7%, 11.2%, and 2.1%, respectively, for the ten patients. The percentage of tracking time for a > 3 mm posterior motion was four to five times higher than that in other directions. For treatments completed in 5 min (VMAT) and 10 min (IMRT), the proportion for the prostate to shift by > 3mm was 4% and 12%, respectively. Although intrafractional prostate motion was generally small, caution should be taken for patients who exhibit frequent large intrafractional motion. For those patients, adjustment of patient positioning may be necessary or a larger treatment margin may be used. After the initial alignment, the likelihood of prostate motion increases with time. Therefore, it is favorable to use advanced techniques (e.g., VMAT) that require less delivery time in order to reduce the treatment uncertainty resulting from intrafractional prostate motion.


Asunto(s)
Sistemas de Computación , Monitoreo Fisiológico , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Fraccionamiento de la Dosis de Radiación , Tomografía Computarizada Cuatridimensional/instrumentación , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Masculino , Movimiento , Planificación de la Radioterapia Asistida por Computador/instrumentación , Radioterapia de Intensidad Modulada/métodos , Carga Tumoral
2.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2082-2090, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37681372

RESUMEN

We investigated understory fuel loads of Quercus mongolica natural secondary forests in Hebei Province, China. We analyzed the effects of stand factors, topographic factors, and ground cover factors on the quantity and composition of fuel, established the dynamic models of understory fuel loads, and proposed management measures. The results showed that the understory total fuel load in Q. mongolica natural secondary forests was 11.68 t·hm-2, which exceeded the forest fire potential threshold (10 t·hm-2). The understory dead fuel load was mainly humus, and the understory living fuel load was mainly shrubs. The 1 h time-lag fuel load increased significantly with increasing canopy density, stand density, stand age, and litter thickness. The 10 h time-lag fuel load increased signi-ficantly with increasing stand density, average tree height, and litter thickness. Humus load decreased significantly with increasing altitude and increased significantly with increasing humus thickness. Herb load increased significantly with increasing sunny slope orientation and herbal coverage. Shrub load increased significantly with increasing slope degree, shrub coverage, and humus thickness. Understory total fuel load decreased significantly with increasing altitude, and increased significantly with increasing stand density, humus thickness, and litter thickness. The results of stepwise regression analysis indicated that stand density, humus thickness, and altitude could better predict the understory total fuel load (Radj2=0.775). Therefore, more attention should be paid on the control of stand density of Q. mongolica natural secondary forest in Hebei Province. Cleaning of litters and humus on the ground would help prevent forest fires scientifically and effectively.


Asunto(s)
Quercus , Bosques , China , Árboles , Suelo
3.
Med Phys ; 48(10): e808-e829, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34213772

RESUMEN

Independent verification of the dose per monitor unit (MU) to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance (QA). We discuss the role of secondary dose/MU calculation programs as part of a comprehensive QA program. This report provides guidelines on calculation-based dose/MU verification for intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) provided by various modalities. We provide a review of various algorithms for "independent/second check" of monitor unit calculations for IMRT/VMAT. The report makes recommendations on the clinical implementation of secondary dose/MU calculation programs; on commissioning and acceptance of various commercially available secondary dose/MU calculation programs; on benchmark QA and periodic QA; and on clinically reasonable action levels for agreement of secondary dose/MU calculation programs.


Asunto(s)
Radioterapia de Intensidad Modulada , Algoritmos , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Informe de Investigación
4.
Med Phys ; 37(6): 2491-500, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20632560

RESUMEN

PURPOSE: The purpose of this study is to investigate some characteristics of the beam delivery system and their effects on the dose distribution of intensity-modulated radiation therapy (IMRT) and the results of patient-specific IMRT quality assurance (QA). These characteristics include the accelerator source distribution and multileaf collimator (MLC) geometry. METHODS: Monte Carlo dose calculations based on intensity maps that were built from the actual deliverable IMRT leaf sequences with and without considering the characteristics of the beam delivery system were performed in this study using in-house Monte Carlo software. The effect of the resolution of the intensity maps on the dose distribution was investigated first. The mean dose of the treatment target and the voxel doses in the high dose region of seven IMRT plans generated by different treatment planning systems for Varian 21EX and Siemens Primus linear accelerators were used for comparison and evaluation. RESULTS: The results show that a 0.2 x 0.2 mm2 or smaller pixel size is needed for the intensity maps for accurate IMRT dose calculation. The extrafocal source, MLC leaf thickness, leakage, tongue-and-groove structure, and the effective leaf offset can affect the mean dose by up to 1.5%, 4.5%, 5.6%, 5.3%, and 7.8%, respectively, when these factors are considered separately. They also cause significant uncertainties to the voxel dose with standard deviations up to 2.5%, 0.7%, 2.1%, 1.3%, and 5%, respectively. The overall effect on the mean dose is up to 8% and the standard deviation of the voxel dose uncertainty is up to 6.4% when all the effects are included. The maximum standard deviation is reduced to 4.6% if the voxel size of the dose calculation matrix is increased from 0.04 to 0.3 cm3 to make it comparable with the sensitive volume of the ionization chamber used for IMRT QA measurements. CONCLUSIONS: It can be concluded that the characteristics of the beam delivery system are the major contributors to the uncertainty of measurement-based IMRT QA because most of them are not fully considered in the currently available treatment planning systems.


Asunto(s)
Modelos Biológicos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulación por Computador , Humanos , Modelos Estadísticos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Ying Yong Sheng Tai Xue Bao ; 31(9): 2935-2942, 2020 Sep 15.
Artículo en Zh | MEDLINE | ID: mdl-33345494

RESUMEN

To evaluate the adaptability of the cyclic heating mode in the thermal diffusion probe method (TDP) in the measurement of trunk sap flow and the accuracy of the measurement of tree transpiration water consumption, we selected Platycladus orientalis as the research object and set three different heating modes: 60 min/0 min (continuous heating mode), 30 min/30 min (cyclic heating mode with 30 min heating and 30 min cooling), 10 min/50 min (cyclic heating mode with 10 min heating and 50 min cooling). Based on the measured value of the whole tree container wei-ghing method, the temperature gradient characteristics of different heating modes were analyzed using the measurement technology of thermal diffusive trunk sap flow. The Granier's corrected formulas of cyclic heating modes were constructed, with its error being analyzed by validity verification. The results showed that sap flow rate calculated by the cyclic heating mode was consistent with the diurnal variation of the transpiration rate measured by the whole tree weighing method. The temperature of cyclic heating mode could quickly rise, fall and performed stably. The sap flow calculated by Granier's original formula was 61.3% lower than that by weighing method. The corrected Granier formula in the mode of 10 min/50 min and 30 min/30 min were Fd=0.0177K0.9457 (R2=0.88) and Fd=0.0378K1.3146(R2=0.85), respectively. The difference of sap flow rate in P. orientalis by the new formula was smaller than that measured by the whole tree weighing method, and the error of transpiration rate calculated by the 10 min/50 min correction formula was the smallest, 5.9% lower than that calculated by the weighing method, and thus could express the real flow rate. The 10 min/50 min cyclic heating mode could be used to reduce the effect of natural temperature difference, cut down power consumption, and accurately reflect the actual sap flow rate of P. orientalis.


Asunto(s)
Transpiración de Plantas , Thuja , Calefacción , Temperatura , Árboles , Agua
6.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1518-1524, 2020 May.
Artículo en Zh | MEDLINE | ID: mdl-32530229

RESUMEN

We evaluated the adaptability of Granier's empirical formula in the measurement of trunk sap flow in Populus tomentosa. The thermal diffusion probe method (TDP) was used to mea-sure sap flow rate, and the whole tree weighing was simultaneously measured for each tree. We compared results from the Granier empirical formula with that from the whole tree weighing to find out whether Granier formula had any error in measuring the trunk sap flow of P. tomentosa. The transpiration rate by the whole tree weighing method and the temperature difference coefficient K by the thermal diffusion method were fitted with power exponential regression to establish a corrected Granier formula. Compared with the transpiration rate measured by the whole tree weighing method, sap flow rate calculated by the Granier empirical formula was underestimated by 67.7%. Therefore, a calibrated Granier correction formula of P. tomentosa was established: Fd=0.0135K0.6952(R2=0.77). The calculated result from this calibrated formula was only 3.4% lower than the transpiration rate estimated with the whole tree weighing method, which showed good consistency. Thus, the calculation of the P. tomentosa sap flow rate should be corrected when using the Granier empirical formula.


Asunto(s)
Populus , Árboles , Transporte Biológico , Transpiración de Plantas , Agua
7.
Ying Yong Sheng Tai Xue Bao ; 31(11): 3674-3680, 2020 Nov.
Artículo en Zh | MEDLINE | ID: mdl-33300717

RESUMEN

Drought is a main factor affecting the growth and yield of Chinese chestnut trees in Yan-shan Mountains. To investigate the responses of chestnut seedlings to drought stress, the growth and physiological indices, including photosynthetic characteristics, biomass, proline, malondialdehyde, carbon and nitrogen contents were measured in roots, stems, and leaves after the Chinese chestnut 'Yanshanzaofeng' seedlings in the pots were treated by simulating drought for 22 days. The results showed that, compared with the normal irrigation, water contents in the roots, stems and leaves were decreased by 18.3%, 29.0% and 62.8%, respectively, accompanied by the considerable increases in the contents of proline (355.0%-1586.7%) and malondialdehyde except in the stems (41.1%-81.3%). The non-photochemical quenching coefficiency and net photosynthetic rate in the leaves were significantly decreased by 49.4% and 77.4%, respectively. The contents of non-structural carbohydrates were increased by 21.4% in stems and 69.5% in leaves, but that in roots did not change. The contents of nitrate were increased by 28.9% in stems and 26.8% in leaves, but that in roots did not change. Ammonium nitrogen was increased by 16.2%, 12.9% and 217.6% in roots, stems, and leaves, but being statistically significant in the leaves. These results indicated that drought stress led to serious damage to 'Yanshanzaofeng' chestnut seedlings, which inhibited photosynthetic performance, but they could improve their adaptation to drought stress by enhancing carbon and nitrogen metabolism. Our results provide a reference for the breeding and cultivation of drought resistance of the local Chinese chestnut resources.


Asunto(s)
Sequías , Plantones , Pueblo Asiatico , Carbono , Humanos , Nitrógeno , Fotosíntesis
8.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1511-1517, 2020 May.
Artículo en Zh | MEDLINE | ID: mdl-32530228

RESUMEN

The exogenous liquid introduction technology is an effective way to produce the value-added poplar wood with excellent pattern color. This technology was used to add the various concentrated active red dyeing solution (0.2%, 0.4% and 0.6%) into target trees of six-year-old 107 poplar (Populus ×euramericana cv. '74/76'). The photosynthetic gas exchange parameter and sap flow rate were measured by Li-6400 photosynthetic instrument and TDP stem flowmeter, respectively. We analyzed the relationship between photosynthetic parameters, sap flow rate and dye absorption, and the effects of exogenous dye solution on the photosynthetic physiology and sap flow characteristics. The results showed that exogenous dyeing solution significantly inhibited flow rate of poplar trunks. The 0.2% concentrated liquid was far less effective than others (0.4% and 0.6%). The net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (Tr) of poplars treated with different concentrated dyeing liquids were significantly lower than the control poplar. The intercellular carbon dioxide concentration (Ci) decreased first and then increased. The inhibitory effects of 0.4% and 0.2% concentrated dyeing solutions on photosynthesis were stronger than that of 0.6%. Dye absorption decreased with increasing dye concentration. The maximum liquid flow rate, Pn, gs and Tr were significantly negatively correlated with the dye content. The contents of chlorophyll (a+b), chlorophyll a and chlorophyll b in exogenous dyeing solution treatments were significantly lower than those of the control at the later stage. The concentration of dyeing solution and introduction time determined the amount of dye absorption. The dye solution 0.4%, which was introduced for three days, could ensure the appropriate dye absorption and reduce the inhibitory effect on the physiological activities of the poplar.


Asunto(s)
Fotosíntesis , Populus , Clorofila , Clorofila A , Hojas de la Planta , Árboles
9.
Med Phys ; 47(1): e1-e18, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31679157

RESUMEN

Dose calculation plays an important role in the accuracy of radiotherapy treatment planning and beam delivery. The Monte Carlo (MC) method is capable of achieving the highest accuracy in radiotherapy dose calculation and has been implemented in many commercial systems for radiotherapy treatment planning. The objective of this task group was to assist clinical physicists with the potentially complex task of acceptance testing and commissioning MC-based treatment planning systems (TPS) for photon and electron beam dose calculations. This report provides an overview on the general approach of clinical implementation and testing of MC-based TPS with a specific focus on models of clinical photon and electron beams. Different types of beam models are described including those that utilize MC simulation of the treatment head and those that rely on analytical methods and measurements. The trade-off between accuracy and efficiency in the various source-modeling approaches is discussed together with guidelines for acceptance testing of MC-based TPS from the clinical standpoint. Specific recommendations are given on methods and practical procedures to commission clinical beam models for MC-based TPS.


Asunto(s)
Modelos Teóricos , Método de Montecarlo , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador , Informe de Investigación , Dosificación Radioterapéutica
10.
Med Phys ; 36(11): 5261-91, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19994536

RESUMEN

The concept of in-air output ratio (Sc) was introduced to characterize how the incident photon fluence per monitor unit (or unit time for a Co-60 unit) varies with collimator settings. However, there has been much confusion regarding the measurement technique to be used that has prevented the accurate and consistent determination of Sc. The main thrust of the report is to devise a theoretical and measurement formalism that ensures interinstitutional consistency of Sc. The in-air output ratio, Sc, is defined as the ratio of primary collision water kerma in free-space, Kp, per monitor unit between an arbitrary collimator setting and the reference collimator setting at the same location. Miniphantoms with sufficient lateral and longitudinal thicknesses to eliminate electron contamination and maintain transient electron equilibrium are recommended for the measurement of Sc. The authors present a correction formalism to extrapolate the correct Sc from the measured values using high-Z miniphantom. Miniphantoms made of high-Z material are used to measure Sc for small fields (e.g., IMRT or stereotactic radiosurgery). This report presents a review of the components of Sc, including headscatter, source-obscuring, and monitor-backscattering effects. A review of calculation methods (Monte Carlo and empirical) used to calculate Sc for arbitrary shaped fields is presented. The authors discussed the use of Sc in photon dose calculation algorithms, in particular, monitor unit calculation. Finally, a summary of Sc data (from RPC and other institutions) is included for QA purposes.


Asunto(s)
Aire , Fotones/uso terapéutico , Radioterapia/métodos , Absorción , Algoritmos , Modelos Teóricos , Método de Montecarlo , Fantasmas de Imagen , Control de Calidad , Radioterapia/instrumentación , Radioterapia/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Radioterapia de Intensidad Modulada/métodos , Radioterapia de Intensidad Modulada/normas , Estándares de Referencia , Dispersión de Radiación , Agua
11.
BJR Open ; 1(1): 20190013, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33178943

RESUMEN

OBJECTIVE: To investigate motion artifacts on kV CBCT and MV CBCT images with metal localization devices for image-guided radiation therapy. METHODS: The 8 µ pelvis CBCT template for the Siemens Artiste MVision and Pelvis template for the Varian IX on-board Exact Arms kV were used to acquire CBCT images in this study. Images from both CBCT modalities were compared in CNRs, metal landmark absolute positions, and image volume distortion on three different planes of view. The images were taken on a breathing-simulated thoracic phantom in which several typical metal localization devices were implanted, including clips and wires for breast patients, gold seeds for prostate patients, and BBs as skin markers. To magnify the artifacts, a 4 cm diameter metal ball was also implanted into the thoracic phantom to mimic the metal artifacts. RESULTS: For MV CBCT, the CNR at a 4 sec breathing cycle with 1 cm breathing amplitude was 5.0, 3.4 and 4.6 for clips, gold seeds and BBs, respectively while it was 1.5, 2.0 and 1.6 for the kV CBCT. On the images, the kV CBCT showed symmetric streaking artifacts both in the transverse and longitudinal directions relative to the motion direction. The kV CBCT images predicted 89 % of the expected volume, while the MV CBCT images predicted 95 % of the expected volume. The simulated soft tissue observed in the MVCT could not be detected in the kV CBCT. CONCLUSION: The MV CBCT images showed better volume prediction, less streaking effects and better CNRs of a moving metal target, i.e. clips, BBs, gold seeds and metal balls than on the kV CBCT images. The MV CBCT was more advantageous compared to the kV CBCT with less motion artifacts for metal localization devices. ADVANCES IN KNOWLEDGE: This study would benefit clinicians to prescribe MV CBCT as localization modality for radiation treatment with moving target when metal markers are implanted.

12.
Phys Med Biol ; 53(5): 1183-208, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18296757

RESUMEN

Treating shallow tumors with a homogeneous dose while simultaneously minimizing the dose to distal critical organs remains a challenge in radiotherapy. One promising approach is modulated electron radiotherapy (MERT). Due to the scattering properties of electron beams, the commercially provided secondary and tertiary photon collimation systems are not conducive for electron beam delivery when standard source-to-surface distances are used. Also, commercial treatment planning systems may not accurately model electron-beam dose distributions when collimated without the standard applicators. However, by using the photon multileaf collimators (MLCs) to create segments to modulate electron beams, the quality of superficial tumor dose distributions may improve substantially. The purpose of this study is to develop and evaluate calculations for the narrow segments needed to modulate megavoltage electron beams using photon beam multileaf collimators. Modulated electron radiotherapy (MERT) will be performed with a conventional linear accelerator equipped with a 120 leaf MLC for 6-20 MeV electron beam energies. To provide a sharp penumbra, segments were delivered with short SSDs (70-85 cm). Segment widths (SW) ranging from 1 to 10 cm were configured for delivery and planning, using BEAMnrc Monte Carlo (MC) code, and the DOSXYZnrc MC dose calculations. Calculations were performed with voxel size of 0.2 x 0.2 x 0.1 cm3. Dosimetry validation was performed using radiographic film and micro- or parallel-plate chambers. Calculated and measured data were compared using technical computing software. Beam sharpness (penumbra) degraded with decreasing incident beam energy and field size (FS), and increasing SSD. A 70 cm SSD was found to be optimal. The PDD decreased significantly with decreasing FS. The comparisons demonstrated excellent agreement for calculations and measurements within 3%, 1 mm. This study shows that accurate calculations for MERT as delivered with existing photon MLC are feasible and allows the opportunity to take advantage of the dynamic leaf motion capabilities and control systems, to provide conformal dose distributions.


Asunto(s)
Electrones , Fotones/uso terapéutico , Radioterapia Conformacional/métodos , Método de Montecarlo , Dosificación Radioterapéutica
13.
Int J Radiat Oncol Biol Phys ; 68(2): 347-53, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17379430

RESUMEN

PURPOSE: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. METHODS AND MATERIALS: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age >or=18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapy not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. RESULTS: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. CONCLUSIONS: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules.


Asunto(s)
Neoplasias de la Mama/radioterapia , Carcinoma Intraductal no Infiltrante/radioterapia , Radioterapia de Intensidad Modulada/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Carcinoma Intraductal no Infiltrante/patología , Carcinoma Intraductal no Infiltrante/cirugía , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Efectividad Biológica Relativa
14.
Cell Cycle ; 16(12): 1171-1174, 2017 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-28486014

RESUMEN

The release of inflammatory cytokines has been implicated in the toxicity of conventional radiotherapy (CRT). Transforming growth factor ß (TGF-ß) has been suggested to be a risk marker for pulmonary toxicity following radiotherapy. Pulsed low-dose rate radiotherapy (PLDR) is a technique that involves spreading out a conventional radiotherapy dose into short pulses of dose with breaks in between to reduce toxicities. We hypothesized that the more tolerable toxicity profile of PLDR compared with CRT may be related to differential expression of inflammatory cytokines such as TGF-ß in normal tissues. To address this, we analyzed tissues from mice that had been subjected to lethal doses of CRT and PLDR by histology and immunohistochemistry (IHC). Equivalent physical doses of CRT triggered more cellular atrophy in the bone marrow, intestine, and pancreas when compared with PLDR as indicated by hematoxylin and eosin staining. IHC data indicates that TGF-ß expression is increased in the bone marrow, intestine, and lungs of mice subjected to CRT as compared with tissues from mice subjected to PLDR. Our in vivo data suggest that differential expression of inflammatory cytokines such as TGF-ß may play a role in the more favorable normal tissue late response following treatment with PLDR.


Asunto(s)
Traumatismos Experimentales por Radiación/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Intestino Delgado/metabolismo , Intestino Delgado/patología , Intestino Delgado/efectos de la radiación , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de la radiación , Masculino , Ratones Endogámicos BALB C , Especificidad de Órganos , Traumatismos Experimentales por Radiación/patología , Radioterapia
16.
Med Phys ; 33(7): 2557-64, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16898460

RESUMEN

Conventional IMRT dose verification using film and ion chamber measurements is useful but limited with respect to the actual dose distribution received by the patient. The Monte Carlo simulation has been introduced as an independent dose verification tool for IMRT using the patient CT data and MLC leaf sequence files, which validates the dose calculation accuracy but not the plan delivery accuracy. In this work, we propose a Monte Carlo based IMRT dose verification method that reconstructs the patient dose distribution using the patient CT, actual beam data based on the information from the record and verify system (R/V), and the MLC log files obtained during dose delivery that record the MLC leaf positions and MUs delivered. Comparing the Monte Carlo dose calculation with the original IMRT plan using these data simultaneously validates the accuracy of both the IMRT dose calculation and beam delivery. Such log file based Monte Carlo simulations are expected to be employed as a useful and efficient IMRT QA modality to validate the dose delivered to the patient. We have run Monte Carlo simulations for eight IMRT prostate plans using this method and the results for the target dose were consistent with the original CORVUS treatment plans to within 3.0% and 2.0% with and without heterogeneity corrections in the dose calculation. However, significant dose deviations in nearby critical structures have been observed. The results showed that up to 9.0% of the bladder dose and up to 38.0% of the rectum dose, to which leaf position errors were found to contribute <2%, were underestimated by the CORVUS treatment planning system. The concept of average leaf position error has been defined to analyze MLC leaf position errors for an IMRT plan. A linear correlation between the target dose error and the average position error has been found based on log file based Monte Carlo simulations, showing that an average position error of 0.2 mm can result in a target dose error of about 1.0%.


Asunto(s)
Neoplasias de la Próstata/radioterapia , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Simulación por Computador , Interpretación Estadística de Datos , Relación Dosis-Respuesta en la Radiación , Humanos , Masculino , Método de Montecarlo , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Programas Informáticos
17.
Med Phys ; 43(2): 727-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26843236

RESUMEN

PURPOSE: The CyberKnife M6 (CK-M6) Series introduced a multileaf collimator (MLC) for extending its capability from stereotactic radiosurgery/stereotactic radiotherapy (SBRT) to conventionally fractionated radiotherapy. This work is to investigate the dosimetric quality of plans that are generated using MLC-shaped beams on the CK-M6, as well as their delivery time, via comparisons with the intensity modulated radiotherapy plans that were clinically used on a Varian Linac for treating hepatic lesions. METHODS: Nine patient cases were selected and divided into three groups with three patients in each group: (1) the group-one patients were treated conventionally (25 fractions); (2) the group-two patients were treated with SBRT-like hypofractionation (5 fractions); and (3) the group-three patients were treated similar to group-one patients, but with two planning target volumes (PTVs) and two different prescription dose levels correspondingly. The clinically used plans were generated on the eclipse treatment planning system (TPS) and delivered on a Varian Linac (E-V plans). The multiplan (MP) TPS was used to replan these clinical cases with the MLC as the beam device for the CK-M6 (C-M plans). After plans were normalized to the same PTV dose coverage, comparisons between the C-M and E-V plans were performed based on D(99%) (percentage of prescription dose received by 99% of the PTV), D(0.1cm(3)) (the percentage of prescription dose to 0.1 cm(3) of the PTV), and doses received by critical structures. Then, the delivery times for the C-M plans will be obtained, which are the MP TPS generated estimations assuming having an imaging interval of 60 s. RESULTS: The difference in D(99%) between C-M and E-V plans is +0.6% on average (+ or - indicating a higher or lower dose from C-M plans than from E-V plans) with a range from -4.1% to +3.8%, and the difference in D(0.1cm(3)) was -1.0% on average with a range from -5.1% to +2.9%. The PTV conformity index (CI) for the C-M plans ranges from 1.07 to 1.29 with a mean of 1.19, slightly inferior to the E-V plans, in which the CI ranges from 1.00 to 1.15 with a mean of 1.07. Accounting for all nine patients in three groups, 45% of the critical structures received a lower mean dose for the C-M plans as compared with the E-V plans, and similarly, 48% received a lower maximum dose. Furthermore, the average difference of the mean critical structure dose between the C-M and E-V plans over all critical structures for all patients showed only +2.10% relative to the prescription dose and the similar comparison finds the average difference of the maximum critical structure dose of only +1.24%. The estimated delivery times for the C-M plans on the CK-M6 range from 18 to 24 minutes while they are from 7 to 13.7 min for the E-V plans on the Varian Linac. CONCLUSIONS: For treating hepatic lesions, for the C-M plans that are comparable to E-V plans in quality, the times needed to deliver these C-M plans on the CK-M6 are longer than the delivery time for the E-V plans on the Varian Linac, but may be clinically acceptable.


Asunto(s)
Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirugía , Radiocirugia/instrumentación , Robótica , Tomografía Computarizada Cuatridimensional , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Aceleradores de Partículas , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
18.
Med Phys ; 32(3): 794-806, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15839352

RESUMEN

In a laser-accelerated proton therapy system, the initial protons have broad energy and angular distributions, which are not suitable for direct therapeutic applications. A compact particle selection and collimation device is needed to deliver small pencil beams of protons with desired energy spectra. In this work, we characterize a superconducting magnet system that produces a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. Four magnets are set side by side along the beam axis; each is made of NbTi wires which carry a current density of approximately 10(5) A/cm2 at 4.2 K, and produces a magnetic field of approximately 4.4 T in the corresponding region. Collimation is applied to both the entrance and the exit of the particle selection system to generate a desired proton pencil beam. In the middle of the magnet system, where the magnetic field is close to zero, a particle selection collimator allows only the protons with desired energies to pass through for therapy. Simulations of proton transport in the presence of the magnetic field show that the selected protons have successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. The energy spread for any given characteristic proton energy has been obtained. It is shown that the energy spread is a function of the magnetic field strength and collimator size and reaches the full width at half maximum of 25 MeV for 230 MeV protons. Dose distributions have also been calculated with the GEANT3 Monte Carlo code to study the dosimetric properties of the laser-accelerated proton beams for radiation therapy applications.


Asunto(s)
Terapia por Láser , Magnetismo/instrumentación , Terapia de Protones , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/instrumentación , Carga Corporal (Radioterapia) , Diseño de Equipo , Análisis de Falla de Equipo , Magnetismo/uso terapéutico , Dosificación Radioterapéutica , Radioterapia Conformacional/métodos
19.
Med Phys ; 30(8): 1990-2000, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12945965

RESUMEN

The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to primary electron energy shift. A Siemens 18 MV beam with 15 MeV (instead of 14 MeV) primary electrons would increase by 40% the neutron DER and by 210% the proton + alpha DER. Comparisons with measurements (neutron yields from different materials and neutron dose equivalent) are also presented. Using the NCRP risk assessment method, we found that the dose equivalent from leakage neutrons (at 50-cm off-axis distance) represent 1.1, 1.1, and 2.0% likelihood of fatal secondary cancer for a 70 Gy treatment delivered by the Siemens 18 MV, Varian 15 MV, and Varian 18 MV beams, respectively.


Asunto(s)
Radiometría/métodos , Radioterapia de Alta Energía/instrumentación , Electrones , Rayos gamma , Humanos , Isótopos , Método de Montecarlo , Neoplasias Inducidas por Radiación/etiología , Neutrones , Aceleradores de Partículas , Fantasmas de Imagen , Fotones , Dosificación Radioterapéutica , Radioterapia de Alta Energía/métodos
20.
Med Phys ; 31(6): 1494-503, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15259653

RESUMEN

This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail.


Asunto(s)
Electrones/uso terapéutico , Fenómenos Biofísicos , Biofisica , Humanos , Magnetismo , Neoplasias/radioterapia , Dosificación Radioterapéutica , Radioterapia de Alta Energía/métodos , Radioterapia de Alta Energía/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA