RESUMEN
A hybrid process with membrane bioreactor (MBR) and powdered activated carbon (PAC), PAC/MBR, was used for real municipal wastewater treatment and reuse. The roles of chlorine dose, contact time, pH and bromide in trihalomethane (THM) formation and speciation during chlorination of the reclaimed water were investigated. Total trihalomethane (TTHM) yield exponentially increased to maximum with increasing chlorine dose (correlation coefficient R2=0.98). Prolonging substrate chlorine contact time significantly promoted TTHM formation. Less than 40% of THMs formed in the first 24 h, indicating that the PAC/MBR effluent organic matters were mostly composed of slow-reacting precursors. Increasing pH and bromide concentration facilitated THM formation. Higher chlorine dose and contact time enhanced chloro-THM formation. The bromo-THM formation was favored at near neutral condition. Despite the variation of chlorine dose, contact time and pH, the yield of THM species in order was usually CHCl3>CHBrCl2>CHBr2Cl>CHBr3. However, THM speciation shifted from chlorinated species to brominated species with increasing bromide concentration.
Asunto(s)
Reactores Biológicos , Bromuros/análisis , Carbón Orgánico/química , Cloro/análisis , Halogenación , Trihalometanos/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Factores de Tiempo , Aguas Residuales/análisisRESUMEN
Precipitation of calcium carbonate (CaCO3) scale on heat transfer surfaces is a serious and expensive problem widely occurring in numerous industrial processes. In this study, we compared the scale inhibition effect of six kinds of commercial scale inhibitors and screened out the best one (scale inhibitor SQ-1211) to investigate its scale inhibition performance in highly saline conditions at high temperature through static scale inhibition tests. The influences of scale inhibitor dosage, temperature, heating time and pH on the inhibition efficiency of the optimal scale inhibitor were investigated. The morphologies and crystal structures of the precipitates were characterized by Scanning Electron Microscopy and X-ray Diffraction analysis. Results showed that the scale inhibition efficiency of the optimal scale inhibitor decreased with the increase of the reaction temperature. When the concentration of Ca2+ was 1600 mg/L, the scale inhibition rate could reach 90.7% at 80°C at pH8. The optimal scale inhibitor could effectively retard scaling at high temperature. In the presence of the optimal scale inhibitor, the main crystal structure of CaCO3 changed from calcite to aragonite.
Asunto(s)
Carbonato de Calcio/química , Precipitación Química , Salinidad , Aguas Residuales/química , Cristalización , Calor , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Eliminación de Residuos Líquidos , Difracción de Rayos XRESUMEN
In electro-Fenton (EF), development of a bifunctional electrocatalyst to realize simultaneous H2O2 generation and activation efficiently for generating reactive species remains a challenge. In particular, a nonradical-mediated EF is more favorable for actual wastewater remediation, and deserves more attention. In this study, three-dimensional graphene loaded with Fe3O4 nanoparticles (Fe3O4@3D-GNs) with abundant oxygen-containing functional groups (OFGs) was synchronously synthesized using a NaCl-template method and served as a cathode to establish a highly efficient and selective EF process for contaminant degradation. The amounts of OFGs can be effectively modulated via the pyrolysis temperature to regulate the 2e- oxygen reduction reaction activity and reactive oxygen species (ROS) production. The optimized Fe3O4@3D-GNs synthesized at 750 °C (Fe3O4@3D-GNs-750) with the highest -C-O-C and -CêO group ratios exhibited the maximum H2O2 and 1O2 yields during electrocatalysis, thus showing remarkable versatility for eliminating organic contaminants from surface water bodies. Experiments and theoretical calculations have demonstrated the dominant role of -C-O-C in generating H2O2 and the positive influence of -CêO sites on the production of 1O2. Moreover, the surface-bound Fe(II) favors the generation of surface-bound â¢OH, which steers a more favorable oxidative conversion of H2O2 to 1O2. Fe3O4@3D-GNs were proven to be less pH-dependent, low-energy, stable, and recyclable for practical applications in wastewater purification. This study provides an innovative strategy to engineer active sites to achieve the selective electrocatalysis for eliminating pollution and reveals a novel perspective for 1O2-generation mechanism in the Fenton reaction.
RESUMEN
Conventional oxidative disinfection processes are inefficient in eliminating intracellular antibiotic resistance genes (iARGs) due to the barrier of the cell membrane and the competitive reaction of cellular constituents within antibiotic-resistant bacteria (ARB), resulting in the widespread prevalence of ARGs in recycled water. This study presented the first application of localized heating coupling with advanced oxidation to destroy the resistant Escherichia coli cells and improved subsequent iARGs (blaTEM-1) degradation in a novel photothermal Fenton-like disinfection process. The Fe-Mn@CNT microfiltration membrane, comprising carbon nanotubes wrapped with Fe and Mn nanoparticles (Fe-Mn@CNT), was employed as a nanomaterial for photothermal conversion and H2O2 activation. The highly efficient absorption of full-spectrum photons by CNTs enabled the Fe-Mn@CNT membrane to concentrate light to generate localized intense heat, resulting in the destruction of ARB nearby, and the subsequent release of iARGs. Interfacial heat favored Fe-Mn-induced H2O2 activation, leading to the production of more ·OH, which in turn promoted the oxidation for ARG degradation and ARB cell damage. The results of the acetylcysteine quenching experiments indicated that interfacial heating and radical oxidation-induced accumulation of intracellular reactive oxygen species contributed to the elimination of about 1-log iARGs through direct attack. The integrity of the cell membrane, the morphology of ARB and the variation of i/e ARG copy numbers were observed to reveal that the introduction of interfacial heating aggravated the cell lysis and accelerated the iARGs release, resulting in the inactivation of 7.27-log ARB and the elimination of 4.64-log iARGs and 2.23-log eARGs. Localized heating coupling with ·OH oxidation achieved a 143 % increase in iARGs removal compared to the conventional Fenton-like oxidation. The interfacial photothermal Fenton-like disinfection process exhibited remarkable material stability, robust disinfection performance, and effective suppression of horizontal gene transfer, underscoring its immense potential to mitigate the risk of ARG dissemination in reclaimed water systems.
RESUMEN
The study investigated "Building Ecological Civilization: the Importance of Promoting Green Investments by Chinese Companies" to examine the complex connections between the factors affecting Chinese businesses' ecological performance (EP). An autoregressive distributed lag (ARDL) model is used in the study to analyze the impact of green investments (GI), the policy environment (PE), government support (GS), public awareness and perception (PAP), and technological capability (TC) on companies' earnings per share (EPS). The results show a strong correlation between GI and EP, indicating that businesses' growing use of green initiatives is essential for raising environmental sustainability. The study also shows that PE, TC, and EP have an inverse relationship, indicating the need for more supportive governmental policies and regulations and the effective adoption and implementation of green technologies. The interaction of GS and PAP significantly reduces the ecological impact of green investments, highlighting the significance of citizen involvement and the role of government in advancing ecological civilization. The findings also demonstrated that green investments, policy environments, public perception, and technology influence the ecological performance of businesses. They also demonstrate statistical robustness with low p-values. This information is essential for developing policies that support an ecological civilization, which is necessary for China and globally in light of the current climate crisis.
Asunto(s)
Comercio , Desarrollo Económico , Política Ambiental , Desarrollo Sostenible , China , Clima , Inversiones en Salud , Comercio/organización & administración , Cambio ClimáticoRESUMEN
The simultaneous removal of antibiotic and antibiotic resistance genes (ARGs) are important to inhibit the spread of antibiotic resistance. In this study, a coupled treatment system was developed using a CeO2 modified carbon nanotube electrochemical membrane and NaClO (denoted as CeO2@CNT-NaClO) to treat simulated water samples containing antibiotics and antibiotic-resistant bacteria (ARB). As the mass ratio of CeO2 to CNT was 5:7 and the current density was 2.0 mA/cm2, the CeO2@CNT-NaClO system removed 99% of sulfamethoxazole, 4.6 log sul1 genes, and 4.7 log intI1 genes from the sulfonamide-resistance water samples, and removed 98% of tetracycline, 2.0 log tetA genes, and 2.6 log intI1 genes of the tetracycline-resistance water samples. The outstanding performance of the CeO2@CNT-NaClO system for simultaneously removing antibiotic and ARGs was mainly ascribed to the generation of multiple reactive species, including â¢OH, â¢ClO, â¢O2- and 1O2. Antibiotics can undergo efficient degradation by â¢OH. However, the reaction between â¢OH and antibiotics reduces the availability of â¢OH to permeate into the cells and react with DNA. Nevertheless, the presence of â¢OH enhancd the effects of â¢ClO, â¢O2-, and 1O on ARG degradation. Through the coupled action of â¢OH, â¢ClO, â¢O2-, and 1O2, the cell membranes of ARB experience severe damage, resulting in an increase in intracellular reactive oxygen species (ROS) and a decrease in superoxide dismutase (SOD) activity. Consequently, this coordinated mechanism leads to superior removal of ARGs.
Asunto(s)
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Tetraciclina , AguaRESUMEN
Visible-light photocatalytic chlorite activation has emerged as an efficient oxidation process for micropollutant elimination. However, the in-depth mechanism of chlorite activation is not understood. In this study, using neodymium-doped bismuth vanadate (NdxBi1-xVO4-δ) as a model catalyst, we describe the oxygen vacancy (OV)-mediated chlorite activation process for efficient ClO2 generation and cephalexin (CPX) degradation. DFT calculations and in situ DRIFTS suggest that the OV-introduced surface -OH serves as the Brønsted acidic center for chlorite adsorption. The OV-mediated chlorite activation involves multistep reactions that surface hydroxylation and proton transfer from the surface -OH to chlorite, forming metastable chlorous acid (HClO2) and further disproportionating to ClO2. As compared with vis-photocatalysis, the vis-photocatalysis coupled with chlorite activation (vis/chlorite) technique exhibits superior performance in antibiotic degradation and achieves efficient microorganism inactivation. This work uncovers the role of OVs on chlorite activation and provides a rational strategy for designing visible-light-driven oxidation techniques in water and wastewater treatment.
RESUMEN
Wastewater treatment plants (WWTPs) are important hubs for the spread of antibiotic resistance genes (ARGs). Engineered nanoparticles, which was inevitably released to WWTPs, could change environmentally sensitive of antibiotic resistant bacteria (ARB). This would influence the fate of ARGs in subsequent disinfection process and consequent health risk. In this study, the ARGs fate of the effluent in conventional sodium hypochlorite (NaClO) disinfection process was investigated as multi-walled carbon nanotubes (MWCNTs) existed in sequencing batch reactor (SBR). The results showed the existence of MWCNTs in SBR could enhance the removal efficiency of intracellular 16S rRNA gene and intI1, extracellular intI1, sul2 and tetX in the effluent by NaClO. This is mainly due to the variation of bacterial physiological status, bacterial population structure and the activation of NaClO under the role of MWCNTs. MWCNTs in SBR could increase in membrane permeability of bacterial cells, which would be conducive to the penetration of chlorination to cytoplasm. MWCNTs in SBR also could change the bacterial population structure and induce the chlorine-sensitive bacteria; thus the potential hosts of ARGs in the effluent would be more easily inactivated by NaClO. Moreover, the residual MWCNTs in the effluent could activate NaClO to generate various free radical, which would enhance the oxidizing capacity of chlorination.
Asunto(s)
Nanotubos de Carbono , Aguas Residuales , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias , Desinfección , Genes Bacterianos , ARN Ribosómico 16S/genética , Aguas Residuales/químicaRESUMEN
Periodic chemical cleaning with sodium hypochlorite (NaClO) is essential to restore the membrane permeability in a membrane bioreactor (MBR). However, the chlorination of membrane foulants results in the formation of disinfection by-products (DBPs), which will cause the deterioration of the MBR effluent and increase the antibiotic resistance in bacteria in the MBR tank. In this study, the formation of 14 DBPs during chemical cleaning offouled MBR membrane modules was investigated. Together with the effects of biofilm extracellular polymeric substances (EPS), influences of reaction time, NaClO dosage, initial pH, and cleaning temperature on the DBP formation were investigated. Haloacetic acids (HAAs) and trichloromethane (TCM), composed over 90% of the DBPs, were increasingly accumulated as the NaClO cleaning time extended. By increasing the chlorine dosage, temperature, and pH, the yield of TCM and dichloroacetic acid (DCAA) was increased by up to a factor of 1-14, whereas the yields of haloacetonitriles (HANs) and haloketones (HKs) were decreased. Either decreasing in the chlorine dosage and cleaning temperature or adjusting the pH of cleaning reagents toward acidic or alkaline could effectively reduce the toxic risks caused by DBPs. After the EPS extraction pretreatment, the formation of DBPs was accelerated in the first 12 h due to the damage of biofilm structure. Confocal laser scanning microscopy (CLSM) images showed that EPS, particularly polysaccharides, were highly resistant to chlorine and might be able to protect the cells exposed to chlorination. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s11783-021-1389-3 and is accessible for authorized users.
RESUMEN
The increasing discharge of high-salinity organic wastewater has drawn much concern. This work investigated the degradation and mineralization of ciprofloxacin (CIP) in high-salinity wastewater by ozonation coupled with ultraviolet irradiation (UV). After coupling with UV, the removal efficiency of CIP was increased insignificantly (maximum 5.0%), while the dissolved organic carbon (DOC) removal in CIP wastewater (CW) was enhanced dramatically to 91.4% as compared with independent O3 (37.5%). The reactive oxygen species (ROS) were identified as singlet oxygen (1O2) and superoxide anion radical (O2-â¢)·through electron paramagnetic resonance (EPR) and quenching experiments, among which 1O2 predominated in the UV/O3 process. The existence of salt (Na2SO4 or NaCl) accelerated the mass transfer of O3 at the gas-liquid interface, thus CIP removal was promoted in UV/O3/SO42- system. However, excessive Cl- inhibited the removal efficiency of DOC in CW owing to its consumption of O3. CIP degradation decreased as pH increased in non-salinity and UV/O3/SO42- system, which proved the direct reaction occurred between CIP and O3. On the contrary, the O3 mass transfer increased with increasing pH, hence the elimination of DOC in CW was promoted in UV/O3/Cl- system. Volatile organic compounds (VOCs) were detected from tail gas, but the toxicity estimation indicated the toxicity of products was similar or less than that of CIP. Overall, this work is meaningful for the practical application of UV/O3 process in the high-salinity industry.
Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Ciprofloxacina , Salinidad , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisisRESUMEN
In this work, the combined ultraviolet ozone process (UV/O3) was applied for organic contaminant (Reactive Blue K-GL, RB) degradation in high salinity. The degradation rates of RB in both O3 and UV/O3 systems were enhanced by NaCl (the k increased from 0.080 to 0.116 to 0.132 and 0.267 min-1 respectively), while mineralization rate varied at different salt conditions. In addition, UV irradiation promoted the degradation efficiency of RB with the presence of salt. Singlet oxygen (1O2) was the primary active species in the UV/O3 system. The quenching experiments and signal intensity of 1O2 corresponded well to the mineralization of RB. Under conditions of high salinity and high pH, O3 has high mass transfer coefficient (kLa, 3.303 min-1) and self-decomposition (kd, 0.600 min-1), which further promoted the formation of 1O2 for mineralization of RB. Furthermore, UV/O3 system was efficient in real textile wastewater treatment (CODCr removal rate 91.7% and decolorization rate 98.7%).
Asunto(s)
Contaminantes Ambientales , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Oxidación-Reducción , Salinidad , Oxígeno Singlete , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisisRESUMEN
Bisulfite-activated permanganate (PM/BS) oxidation process can oxidize ciprofloxacin in complex water matrices rapidly. However, effects of PM/BS pre-oxidation on the formation of disinfection byproducts (DBPs) during post-chlorination of ciprofloxacin-contaminated waters need to be addressed. This study investigated the formation of trihalomethanes (THMs), haloacetonitriles (HANs), haloketones and trichloronitromethane during chlorination of ciprofloxacin-contaminated humic acid (HA), bovine serum albumin (BSA) and alginate solutions, and revealed the effects of PM/BS pre-oxidation on ciprofloxacin degradation and DBP formation during post-chlorination, considering the presence of Br-. Only THMs and HANs were quantifiable. THMs were the most abundant. Ciprofloxacin-contaminated HA exhibited the highest formation potential of DBPs and integrated toxic risk value (ITRV). In the absence of Br-, PM/BS pre-oxidation reduced or hardly affected the toxicity risks derived from DBPs formed from the post-chlorination. However, the presence of Br- greatly reduced the degradation of ciprofloxacin (30-50%) in various waters. In the ciprofloxacin-contaminated waters containing Br-, the total ITRVs of DBPs formed from post-chlorination increased by 60%-800% with PM/BS pre-oxidation, attributing to the enhanced formation of DBPs especially bromochloroacetonitrile and dibromoacetonitrile. Overall, PM/BS is a potential pre-oxidation technology for the treatment of ciprofloxacin-contaminated waters without bromide.
Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Cloro , Ciprofloxacina , Desinfección , Halogenación , Compuestos de Manganeso , Óxidos , Sulfitos , TrihalometanosRESUMEN
This study investigated the N-nitrosodimethylamine (NDMA) formation potential of various dissolved organic matter (DOM) fractions in biologically treated municipal wastewater by UF fractionation, XAD-8 resin adsorption isolation, and excitation and emission matrix (EEM) fluorescence spectroscopy. Removal of various NDMA precursor fractions was also analyzed to evaluate the efficiency of traditional water treatment processes (coagulation, adsorption, and coagulation-adsorption). Results showed that NDMA were mainly formed by low molecular weight (MW) fractions (<30 kDa) and hydrophilic fractions (HiS) in biologically treated municipal wastewater. Integrated coagulation-adsorption treatments showed the highest reduction capacity for NDMA formation potential (57%), followed by isolated adsorption treatment (50%) and isolated coagulation treatment (28%). The powdered activated carbon (PAC) adsorption process could reduce the high MW precursors (>30 kDa) by 48%, which was higher than other treatments. In contrast, the highest uptake (66%) of low MW precursors (<30 kDa) was achieved by the coagulation-adsorption process. All treatments preferentially removed the hydrophobic acids (HoA) fraction compared to other fractions. Coagulation could remove more fulvic acid-like substances and adsorption could remove more microbial by-products and aromatic proteins.
Asunto(s)
Dimetilnitrosamina/química , Aguas Residuales , Adsorción , Eliminación de Residuos Líquidos , Contaminantes Químicos del AguaRESUMEN
In this study, reservoir water intended for drinking water supply was treated by (i) ultrafiltration (UF) (ii) coagulation (CW) (iii) coagulation combined with ultrafiltration (CW-UF). To probe the influences of three treatment processes on disinfection byproduct (DBP) precursors in source water, the changes of dissolved organic matter (DOM) amounts and physicochemical properties, and disinfection byproduct (DBP) formation characteristics during chlorine disinfection were investigated. Both carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) formation and speciation were analyzed. The influence of chlorine dose, contact time on DBP formation and speciation were also studied to optimize the disinfection conditions to minimize the DBP formation. Compared with UF and CW alone, CW-UF improved the dissolved organic carbon (DOC) removal from about 20 % to 59 %. The three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy analysis showed that CW-UF had high removal efficiency in microbial products (Region IV), fulvic acid-like (Region III) and humic acid-like (Region V). The total C-DBP was determined by the formation of trihalomethanes and trichloromethane was the most abundant species (40 %). The most abundant N-DBP species was dichloroacetonitrile (32.5 %), followed by trichloroactetonitrile. CW-UF effectively reduced the risk of DBPs in drinking water supply by reducing 30.8 % and 16.9 % DBPs formation potential compared with UF and CW alone. Increasing contact time improved the yields of both C-DBPs and N-DBPs. Chlorine dosage had slight influence on DBP yield in this study.
Asunto(s)
Acetonitrilos/análisis , Desinfección/métodos , Agua Potable/química , Trihalometanos/análisis , Ultrafiltración/métodos , Contaminantes Químicos del Agua/análisis , China , Cloro/química , Agua Potable/normas , Floculación , Sustancias Húmicas/análisis , Purificación del Agua/métodos , Abastecimiento de Agua/normasRESUMEN
In this study, the MBR was used to treat municipal wastewater for reuse. Effects of powdered activated carbon (PAC) addition on MBR system in terms of effluent water quality, trihalomethane (THM) formation and membrane organic fouling tendency of MBR sludge supernatant at the initial stage of PAC addition were investigated. Effects of chlorine dose and contact time on THM formation and speciation were also studied. PAC addition enhanced the removal of organic matters, especially aromatic components, which improved the UV254 removal rate from 34% to 83%. PAC addition greatly reduced the membrane organic fouling tendency of MBR sludge supernatant. PAC addition reduced the MBR effluent trihalomethane formation potential (THMFP) from 351.29 to 241.95µg/L, while increased THM formation reactivity by 42%. PAC addition enhanced the formation of higher toxic bromine-containing THMs. High chlorine dose and contact time resulted in higher THM formation but lower proportion of bromine-containing THMs.
Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado/química , Purificación del Agua/métodos , Carbón Orgánico , Trihalometanos/análisisRESUMEN
In this study, a hybrid powdered activated carbon-membrane bioreactor (PAC-MBR) system was used to treat municipal wastewater in northern China intended for recycle. In order to control microbiological hazards in PAC-MBR effluent, chloramine was chosen as the disinfectant which could reduce the disinfection by-product yields. Effects of reaction time, chloramines dose, pH value, and bromide ion concentration on trihalomethanes (THMs) formation and speciation during chloramination of the reclaimed effluent were investigated. Study results indicated that the yield of total THMs (TTHM) increased at higher reaction time and chloramines dose. The trend of growth showed that slow reacting precursors were the main components of dissolved organic matter (DOM) in PAC-MBR effluent. THMs formation potential of PAC-MBR effluent achieved the maximum at chloramines dosage of 20 mg/L. Meanwhile, THMs formation was enhanced evidently under alkaline conditions. The yields of THMs species were in following order: CHCl3 > CHBrCl2 > CHBr2Cl > CHBr3, although in different reaction time, chloramines dose, and pH value. Furthermore, the formation of Br-THMs was promoted by the increasing concentration of bromide ion.
Asunto(s)
Cloraminas/química , Trihalometanos/análisis , Aguas Residuales/química , Purificación del Agua , Reactores Biológicos , Carbón Orgánico , China , Desinfectantes , Desinfección/métodos , Halogenación , Agua/química , Contaminantes Químicos del Agua/químicaRESUMEN
In this study, synthetic wastewater was treated by two identical membrane bioreactors (MBRs): the normal sludge MBR (NS-MBR) and the bulking sludge MBR (BS-MBR). Effects of filamentous bulking on the characteristics and trihalomethane (THM) formation reactivity of MBR effluent dissolved organic matter (EfOM) were investigated. Filamentous sludge bulking had no significant influence on the regulated MBR effluent water quality except NO2-N and NO3-N. NS-MBR effluent had more low molecular weight (LMW) (<5kDa) EfOM (92.43%) than BS-MBR (75.18%). About two-thirds of EfOM from BS-MBR were hydrophilic substances. On the contrary, EfOM from NS-MBR exhibited higher hydrophobicity. The ratio of polysaccharides and proteins in MBR effluents increased after filamentous bulking. There were more protein-like materials, fulvic acid-like and humic acid-like in BS-MBR EfOM. The THM formation reactivity of BS-MBR EfOM was 30.15% of NS-MBR EfOM, whereas BS-MBR EfOM exhibited higher formation reactivity of bromine containing species.
Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Purificación del Agua/métodos , Sustancias Húmicas/análisis , Aguas del Alcantarillado/química , Trihalometanos/química , Aguas Residuales/análisis , Calidad del AguaRESUMEN
Soluble microbial products are heterogeneous organic materials generated during microbial growth and decay, which are the major soluble organic matters in MBR effluents and are the primary precursors forming disinfection by-products (DBPs). In this study, biomass associated products (BAP) and utilization associated products (UAP) were separately produced to investigate their physical chemical characteristics and disinfection byproduct (DBP) formation during chlorination in the presence of ammonia. BAP had higher formation reactivity of halogenated carbonaceous and nitrogenous DBPs including trihalomethanes, haloketones, haloacetonitriles and trichloronitromethane due to their higher percentage of large molecular weight (MW) materials and humic substances compared with UAP. However, the nonhalogenated species N-nitrosodimethylamine (NDMA) yield of UAP was twice higher than that of BAP because UAP contained more nitrogenous organic matters with MW<500Da including aromatic polypeptide/amino acid-like materials and secondary amines, which have been proved to have high NDMA formation potential.
Asunto(s)
Amoníaco/química , Biomasa , Reactores Biológicos , Dimetilnitrosamina/química , Nitrógeno/química , Trihalometanos/química , Desinfección , Halogenación , Sustancias HúmicasRESUMEN
In this study, coagulation performance of polyaluminum chloride (PAC) and PAC-lignin acrylamide (PAC+LAM) in reservoir water treatment was contrastively analyzed. Effects of operating conditions including chlorine dose, contact time and pH on the formation potential of trihalomethanes (THMs) during chlorination in coagulated effluent were also investigated. Comparing with PAC, PAC+LAM achieved higher efficiency in the removal of THMs precursors. TTHM yield in unfiltered water samples (UW) was greater than that of filtered water (FW) due to the residual dissolved organic matter (DOM) in the suspended particles or micro flocs. Meanwhile, operating conditions during chlorination had a significant influence on THMs formation potential. With chlorine dose rising, mass ratio of CHCl3 to TTHM increased, whereas that of CHBr2Cl decreased due to higher Cl2/Br(-) molar ratio. TTHM and CHCl3 levels rose with the increase of pH. Under a given chlorination condition, there was a minor effect of contact time on THM speciation.
Asunto(s)
Acrilamidas/química , Hidróxido de Aluminio/química , Cloro/química , Lignina/química , Trihalometanos/química , Contaminantes Químicos del Agua/química , Floculación , Halogenación , Concentración de Iones de Hidrógeno , Aguas ResidualesRESUMEN
Characteristics and trihalomethane (THM) formation reactivity of dissolved organic matter (DOM) in effluents from two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition (referred to as PAC/MBR and MBR, respectively) were examined to investigate the effects of PAC addition on THM formation of MBR effluent during chlorination. PAC addition increased the specific UV absorbance. Hydrophobic DOM especially hydrophobic acids in PAC/MBR effluent (50%) were more than MBR effluent (42%). DOM with molecular weight <1 kDa constituted 12% of PAC/MBR effluent DOM, which was less than that of MBR effluent (16%). Data obtained from excitation and emission matrix fluorescence spectroscopy revealed that PAC/MBR effluent DOM contained more simple aromatic protein, but had less fulvic acid-like and soluble microbial by-product-like. PAC addition reduced the formation of bromine-containing THMs during chlorination of effluents, but increased THM formation reactivity of effluent DOM.