Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 248: 114344, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455349

RESUMEN

Considering that research has mainly focussed on how excessive iron supplementation leads to reproductive cytotoxicity, there is a lack of in-depth research on reproductive system disorders caused by iron deficiency. To gain a better understanding of the effects of iron deficiency on the reproductive system, especially spermatogenesis, we first constructed a mouse model of iron deficiency. We employed multi-omic analysis, including transcriptomics, metabolomics, and microbiomics, to comprehensively dissect the impact of iron deficiency on spermatogenesis. Moreover, we verified our findings in detail using western blot, immunofluorescence, immunohistochemistry, qRT-PCR and other techniques. Microbiomic analysis revealed altered gut microbiota in iron-deficient mice, and functional predictive analysis showed that gut microbiota can regulate spermatogenesis. The transcriptomic data indicated that iron deficiency directly alters expression of meiosis-related genes. Transcriptome data also revealed that iron deficiency indirectly regulates spermatogenesis by affecting hormone synthesis, findings confirmed by metabolomic data, western blot and immunofluorescence. Interestingly, competing endogenous RNA networks also play a vital role in regulating spermatogenesis after iron deficiency. Taken together, the data elucidate that iron deficiency impairs spermatogenesis and increases the risk of male infertility by affecting hormone synthesis and promoting gut microbiota imbalance.


Asunto(s)
Deficiencias de Hierro , Masculino , Ratones , Animales , Espermatogénesis , Metabolómica , Hierro , Hormonas
2.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296700

RESUMEN

In this study, the synthesis parameters of the lotus root polysaccharide iron complex (LRPF) were determined and optimized by response surface methodology. Under the optimum preparation conditions, the pH of the solution was 9, the ratio of M (trisodium citrate): m (lotus root polysaccharide) was 0.45, the reaction time was 3 h. UV spectroscopy, thermogravimetry, FT-IR spectroscopy, X-ray diffraction, CD, and NMR were used for the characterization of the LRPF. LRPF has good stability and easily releases iron ions under artificial gastrointestinal conditions. LRPF exhibited antioxidant activity in vitro and can significantly improve the antioxidant activity in vivo. In addition, LRPF has a good effect in the treatment of iron deficiency anemia in model mice, impacts the gut microbiome, and reduces the iron deficiency-induced perniciousness by regulating steroid hormone biosynthesis. Therefore, LRPF can be used as a nutritional supplement to treat and prevent iron-deficiency anemia and improve human immunity.


Asunto(s)
Anemia Ferropénica , Antioxidantes , Ratones , Humanos , Animales , Antioxidantes/farmacología , Antioxidantes/química , Espectroscopía Infrarroja por Transformada de Fourier , Anemia Ferropénica/tratamiento farmacológico , Hierro/química , Polisacáridos/farmacología , Polisacáridos/química , Esteroides , Hormonas
3.
Molecules ; 26(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808420

RESUMEN

In this study, the optimum synthetic process of the Pyracantha polysaccharide-iron (PPI) complex was studied via response surface methodology (RSM). Its antioxidant and anti-cancer activities were also investigated. It was demonstrated that the optimal conditions for the synthetic process of the complex were as follows: a pH of 8.9, a reaction temperature of 70 °C and a trisodium citrate:polysaccharide ratio of 1:2. PPI were analysis by UV, FTIR, SEM, CD, XRD, TGA and NMR. PPI was able to scavenge the metal ion, ABTS and free radicals of the superoxide anion, demonstrating its potential antioxidant activity. PPI was found to display cytotoxicity to Skov3 cells, as shown by its ability to induce apoptosis and alter gene expression in Skov3 cells. These findings show than PPI may represent a novel antioxidant and chemotherapeutic drug.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Compuestos Férricos/farmacología , Depuradores de Radicales Libres/farmacología , Polisacáridos/farmacología , Pyracantha/química , Línea Celular Tumoral , Humanos
4.
J Hazard Mater ; 468: 133836, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394902

RESUMEN

Global aflatoxin B1 (AFB1) contamination is inevitable, and it can significantly damage testicular development. However, the current mechanism is confusing. Here, by integrating the transcriptome, microbiome, and serum metabolome, we comprehensively explain the impact of AFB1 on testis from the gut-metabolism-testis axis. Transcriptome analysis suggested that AFB1 exposure directly causes abnormalities in testicular inflammation-related signalling, such as tumor necrosis factor (TNF) pathway, and proliferation-related signalling pathways, such as phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) pathway, which was verified by immunofluorescence. On the other hand, we found that upregulated inflammatory factors in the intestine after AFB1 exposure were associated with intestinal microbial dysbiosis, especially the enrichment of Bacilli, and enrichment analysis showed that this may be related to NLR family pyrin domain containing 3 (NLRP3)-mediated NOD-like receptor signalling. Also, AFB1 exposure caused blood metabolic disturbances, manifested as decreased hormone levels and increased oxidative stress. Significantly, B. licheniformis has remarkable AFB1 degradation efficiency (> 90%). B. licheniformis treatment is effective in attenuating gut-testis axis damage caused by AFB1 exposure through the above-mentioned signalling pathways. In conclusion, our findings indicate that AFB1 exposure disrupts testicular development through the gut-metabolism-testis axis, and B. licheniformis can effectively degrade AFB1.


Asunto(s)
Bacillus licheniformis , Testículo , Masculino , Humanos , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Metaboloma
5.
Environ Pollut ; 329: 121729, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116564

RESUMEN

Aflatoxins B1 (AFB1), a type I carcinogen widely present in the environment, not only poses a danger to animal husbandry, but also poses a potential threat to human reproductive health, but its mechanism is still unclear. To address this question, multi-omics were performed on porcine Sertoli cells and mice testis. The data suggest that AFB1 induced testicular damage manifested as decreased expression of GJA1, ZO1 and OCCLUDIN in mice (p < 0.01) and inhibition of porcine Sertoli cell proliferation. Transcriptomic analysis suggested changes in noncoding RNA expression profiles that affect the cell cycle-related Ras/PI3K/Akt signaling pathway after AFB1 exposure both in mice and pigs. Specifically, AFB1 caused abnormal cell cycle of testis with the characterization of decreased expressions of CCNA1, CCNB1 and CDK1 (p < 0.01). Flow cytometry revealed that the G2/M phase was significantly increased after AFB1 exposure. Meanwhile, AFB1 downregulated the expressions of Ras, PI3K and AKT both in porcine Sertoli cell (p < 0.01) and mice testis (p < 0.01). Metabolome analysis verified the alterations in the PI3K/Akt signaling pathway (p < 0.05). Moreover, the joint analysis of metabolome and microbiome found that the changes of metabolites were correlated with the expression of flora. In conclusion, we have demonstrated that AFB1 impairs testicular development via the cell cycle-related Ras/PI3K/Akt signaling.


Asunto(s)
Aflatoxina B1 , Ciclo Celular , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Masculino , Ratones , Aflatoxina B1/toxicidad , División Celular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Porcinos
6.
J Toxicol Sci ; 47(6): 257-268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35650142

RESUMEN

Zearalenone (ZEN), one of the most prevalent non-steroidal oestrogenic mycotoxins, is primarily produced by Fusarium fungi. Due to its toxicity as an oestrogenic compound and wide distribution in feed and foods, the reproductive toxicology of ZEN exposure is of public concern. The aim of the present study was to investigate the effect of ZEN on Sertoli cells to identify apoptotic pathways induced by this compound. We found that ZEN reduced the viability and caused apoptosis in Sertoli cells in vitro. Notably, we observed that such effects were associated with a significant increase in reactive oxygen species (ROS) and the number of cells that showed positive staining for γH2AX and RAD51, enzymes essential for repairing DNA damage. There was a parallel decrease in the expression of occludin and connexin 43, proteins that are present in the testis-blood barrier and gap junctions of Sertoli cells, respectively. Overall, the present study confirms that ZEN exposure can have serious deleterious effects on mammalian Sertoli cells and offers novel insight about its molecular targets in these cells.


Asunto(s)
Estrógenos no Esteroides , Micotoxinas , Zearalenona , Animales , Apoptosis , Estrógenos no Esteroides/toxicidad , Masculino , Mamíferos , Ratones , Células de Sertoli , Zearalenona/toxicidad
7.
Food Sci Nutr ; 9(8): 4335-4348, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34401083

RESUMEN

Polysaccharides are good chelating agents for metal ions, which are often used to synthesize polysaccharide metal ion complexes. With carboxymethyl pachymaran (CMP) as the substrate, carboxymethyl pachymaran iron (CMPF), carboxymethyl pachymaran selenium (CMPS), and carboxymethyl pachymaran zinc (CMPZ) were synthesized by response surface methodology, and their biological characteristics were studied. The results showed that the CMP was a ß-polysaccharide, and the degree of carboxymethylation was 0.6352. The polysaccharide metal ion complexes were characterized by physicochemical methods, scanning electron microscopy, Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and nuclear magnetic resonance spectroscopy. All the polysaccharides and complexes possessed antioxidant activity in vitro with scavenging activities to ABTS, superoxide anions, and ferrous ions. CMPF, CMPS, and CMPZ caused significant inhibition of A2780 cell proliferation, promoted the production of reactive oxygen species, and induced apoptosis in a human ovarian cancer cell line (A2780 cells). These results suggest that the CMP complex may be an effective candidate drug for cancer treatment in the field of functional food and pharmacology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA