Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nature ; 615(7954): 939-944, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949205

RESUMEN

Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.


Asunto(s)
Rodopsina , Visión Ocular , Animales , Sitios de Unión/efectos de la radiación , Cristalografía , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Isomerismo , Fotones , Unión Proteica/efectos de la radiación , Conformación Proteica/efectos de la radiación , Retinaldehído/química , Retinaldehído/metabolismo , Retinaldehído/efectos de la radiación , Rodopsina/química , Rodopsina/metabolismo , Rodopsina/efectos de la radiación , Factores de Tiempo , Visión Ocular/fisiología , Visión Ocular/efectos de la radiación
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34326250

RESUMEN

G protein-coupled receptors (GPCRs) are important pharmaceutical targets for the treatment of a broad spectrum of diseases. Although there are structures of GPCRs in their active conformation with bound ligands and G proteins, the detailed molecular interplay between the receptors and their signaling partners remains challenging to decipher. To address this, we developed a high-sensitivity, high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method to interrogate the first stage of signal transduction. GPCR-G protein complex formation is detected as a proxy for the effect of ligands on GPCR conformation and on coupling selectivity. Over 70 ligand-GPCR-partner protein combinations were studied using as little as 1.25 pmol protein per sample. We determined the selectivity profile and binding affinities of three GPCRs (rhodopsin, beta-1 adrenergic receptor [ß1AR], and angiotensin II type 1 receptor) to engineered Gα-proteins (mGs, mGo, mGi, and mGq) and nanobody 80 (Nb80). We found that GPCRs in the absence of ligand can bind mGo, and that the role of the G protein C terminus in GPCR recognition is receptor-specific. We exemplified our quantification method using ß1AR and demonstrated the allosteric effect of Nb80 binding in assisting displacement of nadolol to isoprenaline. We also quantified complex formation with wild-type heterotrimeric Gαißγ and ß-arrestin-1 and showed that carvedilol induces an increase in coupling of ß-arrestin-1 and Gαißγ to ß1AR. A normalization strategy allows us to quantitatively measure the binding affinities of GPCRs to partner proteins. We anticipate that this methodology will find broad use in screening and characterization of GPCR-targeting drugs.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores Opioides/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Arrestina/genética , Arrestina/metabolismo , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ligandos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Opioides/química , Anticuerpos de Cadena Única , Pavos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
3.
Molecules ; 26(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443697

RESUMEN

There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled "Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents" edited by Mary K. Phillips-Jones.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/enzimología , Descubrimiento de Drogas , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Transducción de Señal , Ligandos , Dominios Proteicos , Transducción de Señal/efectos de los fármacos
4.
Molecules ; 25(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053673

RESUMEN

Streptococcus pneumoniae is a frequent bacterial pathogen of the human respiratory tract causing pneumonia, meningitis and sepsis, a serious healthcare burden in all age groups. S. pneumoniae lacks complete respiratory chain and relies on carbohydrate fermentation for energy generation. One of the essential components for this includes the mannose phosphotransferase system (Man-PTS), which plays a central role in glucose transport and exhibits a broad specificity for a range of hexoses. Importantly, Man-PTS is involved in the global regulation of gene expression for virulence determinants. We herein report the three-dimensional structure of the EIIA domain of S. pneumoniae mannose phosphotransferase system (SpEIIA-Man). Our structure shows a dimeric arrangement of EIIA and reveals a detailed molecular description of the active site. Since PTS transporters are exclusively present in microbes and sugar transporters have already been suggested as valid targets for antistreptococcal antibiotics, our work sets foundation for the future development of antimicrobial strategies against Streptococcus pneumoniae.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Manosa/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Streptococcus pneumoniae/enzimología , Cristalografía por Rayos X , Especificidad por Sustrato
5.
Methods ; 147: 3-39, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29656078

RESUMEN

Despite many high-profile successes, recombinant membrane protein production remains a technical challenge; it is still the case that many fewer membrane protein structures have been published than those of soluble proteins. However, progress is being made because empirical methods have been developed to produce the required quantity and quality of these challenging targets. This review focuses on the microbial expression systems that are a key source of recombinant prokaryotic and eukaryotic membrane proteins for structural studies. We provide an overview of the host strains, tags and promoters that, in our experience, are most likely to yield protein suitable for structural and functional characterization. We also catalogue the detergents used for solubilization and crystallization studies of these proteins. Here, we emphasize a combination of practical methods, not necessarily high-throughput, which can be implemented in any laboratory equipped for recombinant DNA technology and microbial cell culture.


Asunto(s)
Bacterias/genética , Proteínas de la Membrana/biosíntesis , Proteínas Recombinantes/biosíntesis , Levaduras/genética , Plásmidos , Regiones Promotoras Genéticas
6.
Eur Biophys J ; 47(7): 723-737, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30066130

RESUMEN

Despite the importance of membrane proteins in cellular processes, studies of these hydrophobic proteins present major technical challenges, including expression and purification for structural and biophysical studies. A modified strategy of that proposed previously by Saidijam et al. (2005) and others, for the routine expression of bacterial membrane proteins involved in environmental sensing and antimicrobial resistance (AMR), is proposed which results in purification of sufficient proteins for biophysical experiments. We report expression successes amongst a collection of enterococcal vancomycin resistance membrane proteins: VanTG, VanTG-M transporter domain, VanZ and the previously characterised VanS (A-type) histidine protein kinase (HPK). Using the same strategy, we report on the successful amplification and purification of intact BlpH and ComD2 HPKs of Streptococcus pneumoniae. Near-UV circular dichroism revealed both recombinant proteins bound their pheromone ligands BlpC and CSP2. Interestingly, CSP1 also interacted with ComD. Finally, we evaluate the alternative strategy for studying sensory HPKs involving isolated soluble sensory domain fragments, exemplified by successful production of VicKESD of Enterococcus faecalis VicK. Purified VicKESD possessed secondary structure post-purification. Thermal denaturation experiments using far-UV CD, a technique which can be revealing regarding ligand binding, revealed that: (a) VicKESD denaturation occurs between 15 and 50 °C; and (b) reducing conditions did not detectably affect denaturation profiles suggesting reducing conditions per se are not directly sensed by VicKESD. Our findings provide information on a modified strategy for the successful expression, production and/or storage of bacterial membrane HPKs, AMR proteins and sensory domains for their future crystallisation, and ligand binding studies.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Proteínas de la Membrana/metabolismo , Feromonas/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana/química , Desnaturalización Proteica , Solubilidad , Temperatura
7.
Microbiology (Reading) ; 162(5): 823-836, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26967546

RESUMEN

This work reports the evolutionary relationships, amplified expression, functional characterization and purification of the putative allantoin transport protein, PucI, from Bacillus subtilis. Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from Microbacterium liquefaciens, and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with 12 putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The pucI gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions determined for optimal amplified expression of the PucI(His6) protein in Escherichia coli to a level of about 5 % in inner membranes. Initial rates of inducible PucI-mediated uptake of 14C-allantoin into energized E. coli whole cells conformed to Michaelis-Menten kinetics with an apparent affinity (Kmapp) of 24 ± 3 µM, therefore confirming that PucI is a medium-affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognizes some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His6) was solubilized from inner membranes using n-dodecyl-ß-d-maltoside and purified. The isolated protein contained a substantial proportion of α-helix secondary structure, consistent with the predictions, and a 3D model was therefore constructed on a template of the Mhp1 structure, which aided localization of the potential ligand binding site in PucI.


Asunto(s)
Alantoína/metabolismo , Bacillus subtilis/metabolismo , Hidantoínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Sitios de Unión/fisiología , Transporte Biológico/genética , Clonación Molecular , Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Filogenia , Alineación de Secuencia , Sodio/metabolismo
8.
Biochem Soc Trans ; 44(3): 810-23, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27284046

RESUMEN

This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developed at Leeds alongside Professor Steve Baldwin to whom this review is dedicated. It also reviews two biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins-synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Histidina Quinasa/aislamiento & purificación , Proteínas de la Membrana/aislamiento & purificación , Inhibidores de Proteínas Quinasas , Proteínas Bacterianas/genética , Histidina Quinasa/genética , Ligandos , Proteínas de la Membrana/genética , Transgenes
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1238-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057665

RESUMEN

The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the ß2-adrenoreceptor-Gs protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas de la Membrana/química , Conformación Proteica
10.
Biochim Biophys Acta ; 1818(7): 1595-602, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22366202

RESUMEN

FsrC is the membrane-bound histidine kinase component of the Fsr two-component signal transduction system involved in quorum sensing in the hospital-acquired infection agent Enterococcus faecalis. Synchrotron radiation circular dichroism spectroscopy was used here to study the intact purified protein solubilised in detergent micelles. Conditions required for FsrC stability in detergent were firstly determined and tested by prolonged exposure of stabilised protein to far-ultraviolet radiation. Using stabilised purified protein, far-ultraviolet synchrotron radiation circular dichroism revealed that FsrC is 61% alpha-helical and that it is relatively thermostable, retaining at least 57% secondary structural integrity at 90 degrees C in the presence or absence of gelatinase biosynthesis-activating pheromone (GBAP). Whilst binding of the quorum pheromone ligand GBAP did not significantly affect FsrC secondary structure, near-ultraviolet spectra revealed that the tertiary structure in the regions of the Tyr and Trp residues was significantly affected. Titration experiments revealed a calculated kd value of 2 microM indicative of relatively loose binding ofgelatinase biosynthesis-activating pheromone to FsrC. Although use of synchrotron radiation circular dichroism has been applied to membrane proteins previously, to our knowledge this is the first report of its use to determine a kd value for an intact membrane protein. Based on our findings, we suggest that synchrotron radiation circular dichroism will be a valuable technique for characterising ligand binding by other membrane sensor kinases and indeed other membrane proteins in general. It further provides a valuable screening tool for membrane protein stability under a range of detergent conditions prior to downstream structural methods such as crystallisation and NMR experiments particularly when lower detergent concentrations are used.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dicroismo Circular/métodos , Lactonas/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos Cíclicos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Western Blotting , Estabilidad de Enzimas , Calor , Lactonas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Péptidos Cíclicos/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sincrotrones , Triptófano/química , Triptófano/genética , Triptófano/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
11.
J Inorg Biochem ; 236: 111945, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952593

RESUMEN

α-synuclein protein aggregates are the major constituent of Lewy bodies, which is a main pathogenic hallmark of Parkinson's disease. Both lipid membranes and Cu2+ ions can bind to α-synuclein and modulate its aggregation propensity and toxicity. However, the synergistic effect of copper ions and lipid membranes on α-synuclein remains to be explored. Here, we investigate how Cu2+ and α-synuclein simultaneously influence the lipidic structure of lipidic cubic phase(LCP) matrix by using small-angle X-ray scattering. α-Syn proteins destabilize the cubic-Pn3m phase of LCP that can be further recovered after the addition of Cu2 ions even at a low stoichiometric ratio. By using circular dichroism and nuclear magnetic resonance, we also study how lipid membranes and Cu2+ ions impact the secondary structures of α-synuclein at an atomic level. Although the secondary structure of α-synuclein with lipid membranes is not significantly changed to a large extent in the presence of Cu2+ ions, lipid membranes promote the interaction between α-synuclein C-terminus and Cu2+ ions. The modulation of Cu2+ ions and lipid membranes on α-synuclein dynamics and structure may play an important role in the molecular pathogenesis of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Cobre/química , Humanos , Iones , Lípidos , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo
12.
Science ; 375(6583): 845-851, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35113649

RESUMEN

Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.

13.
FEBS Lett ; 594(3): 553-563, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31598959

RESUMEN

Quorum-sensing mechanisms regulate gene expression in response to changing cell-population density detected through pheromones. In Enterococcus faecalis, Fsr quorum sensing produces and responds to the gelatinase biosynthesis-activating pheromone (GBAP). Here we establish that the enterococcal FsrB membrane protein has a direct role connected with GBAP by showing that GBAP binds to purified FsrB. Far-UV CD measurements demonstrated a predominantly α-helical protein exhibiting a small level of conformational flexibility. Fivefold (400 µm) GBAP stabilised FsrB (80 µm) secondary structure. FsrB thermal denaturation in the presence and absence of GBAP revealed melting temperatures of 70.1 and 60.8 °C, respectively, demonstrating GBAP interactions and increased thermal stability conferred by GBAP. Addition of GBAP also resulted in tertiary structural changes, confirming GBAP binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/citología , Enterococcus faecalis/metabolismo , Lactonas/metabolismo , Lactonas/farmacología , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Percepción de Quorum/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Enterococcus faecalis/efectos de los fármacos , Unión Proteica , Conformación Proteica en Hélice alfa , Estabilidad Proteica/efectos de los fármacos
14.
Mol Membr Biol ; 25(6-7): 449-73, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18785057

RESUMEN

Two-component signal transduction systems are the main mechanism by which bacteria sense and respond to their environment, and their membrane-located histidine protein kinases generally constitute the sensory components of these systems. Relatively little is known about their fundamental mechanisms and precise nature of the molecular signals sensed, because of the technical challenges of producing sufficient quantities of these hydrophobic membrane proteins. This study evaluated the heterologous production, purification and activities of the 16 intact membrane sensor kinases of Enterococcus faecalis. Following the cloning of the genes into expression plasmid pTTQ18His, all but one kinase was expressed successfully in Escherichia coli inner membranes. Purification of the hexa-histidine 'tagged' recombinant proteins was achieved for 13, and all but one were verified as intact. Thirteen intact kinases possessed autophosphorylation activity with no added signal when assayed in membrane vesicles or as purified proteins. Signal testing of two functionally-characterized kinases, FsrC and VicK, was successful examplifying the potential use of in vitro activity assays of intact proteins for systematic signal identification. Intact FsrC exhibited an approximately 10-fold increase in activity in response to a two-fold molar excess of synthetic GBAP pheromone, whilst glutathione, and possibly redox potential, were identified for the first time as direct modulators of VicK activity in vitro. The impact of DTT on VicK phosphorylation resulted in increased levels of phosphorylated VicR, the downstream response regulator, thereby confirming the potential of this in vitro approach for investigations of modulator effects on the entire signal transduction process of two-component systems.


Asunto(s)
Enterococcus faecalis/enzimología , Proteínas de la Membrana , Proteínas Quinasas , Proteómica , Proteínas Bacterianas , Clonación Molecular , Escherichia coli/genética , Histidina , Histidina Quinasa , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/aislamiento & purificación , Proteínas Quinasas/metabolismo , Transducción de Señal
15.
Sci Adv ; 4(9): eaat7052, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255144

RESUMEN

Selective coupling of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) to specific Gα-protein subtypes is critical to transform extracellular signals, carried by natural ligands and clinical drugs, into cellular responses. At the center of this transduction event lies the formation of a signaling complex between the receptor and G protein. We report the crystal structure of light-sensitive GPCR rhodopsin bound to an engineered mini-Go protein. The conformation of the receptor is identical to all previous structures of active rhodopsin, including the complex with arrestin. Thus, rhodopsin seems to adopt predominantly one thermodynamically stable active conformation, effectively acting like a "structural switch," allowing for maximum efficiency in the visual system. Furthermore, our analysis of the well-defined GPCR-G protein interface suggests that the precise position of the carboxyl-terminal "hook-like" element of the G protein (its four last residues) relative to the TM7/helix 8 (H8) joint of the receptor is a significant determinant in selective G protein activation.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Rodopsina/química , Rodopsina/metabolismo , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutación , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/genética
16.
Nat Protoc ; 12(9): 1745-1762, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28771236

RESUMEN

The lipid cubic phase (in meso) method is an important approach for generating crystals and high-resolution X-ray structures of integral membrane proteins. However, as a consequence of instability, it can be impossible-using traditional methods-to concentrate certain membrane proteins and complexes to values suitable for in meso crystallization and structure determination. The cubicon method described here exploits the amphiphilic nature of membrane proteins and their natural tendency to partition preferentially into lipid bilayers from aqueous solution. Using several rounds of reconstitution, the protein concentration in the bilayer of the cubic mesophase can be ramped up stepwise from less than a milligram per milliliter to tens of milligrams per milliliter for crystallogenesis. The general applicability of the method is demonstrated with five integral membrane proteins: the ß2-adrenergic G protein-coupled receptor (ß2AR), the peptide transporter (PepTSt), diacylglycerol kinase (DgkA), the alginate transporter (AlgE) and the cystic fibrosis transmembrane conductance regulator (CFTR). In the cases of ß2AR, PepTSt, DgkA and AlgE, an effective 20- to 45-fold concentration was realized, resulting in a protein-laden mesophase that allowed the formation of crystals using the in meso method and structure determination to resolutions ranging from 2.4 Å to 3.2 Å. In addition to opening up in meso crystallization to a broader range of integral membrane protein targets, the cubicon method should find application in situations that require membrane protein reconstitution in a lipid bilayer at high concentrations. These applications include functional and biophysical characterization studies for ligand screening, drug delivery, antibody production and protein complex formation. A typical cubicon experiment can be completed in 3-5 h.


Asunto(s)
Cristalografía por Rayos X/métodos , Lípidos/química , Proteínas de la Membrana/química , Peso Molecular , Porosidad
17.
Acta Crystallogr D Struct Biol ; 72(Pt 1): 93-112, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26894538

RESUMEN

Here, a method for presenting crystals of soluble and membrane proteins growing in the lipid cubic or sponge phase for in situ diffraction data collection at cryogenic temperatures is introduced. The method dispenses with the need for the technically demanding and inefficient crystal-harvesting step that is an integral part of the lipid cubic phase or in meso method of growing crystals. Crystals are dispersed in a bolus of mesophase sandwiched between thin plastic windows. The bolus contains tens to hundreds of crystals, visible with an in-line microscope at macromolecular crystallography synchrotron beamlines and suitably disposed for conventional or serial crystallographic data collection. Wells containing the crystal-laden boluses are removed individually from hermetically sealed glass plates in which crystallization occurs, affixed to pins on goniometer bases and excess precipitant is removed from around the mesophase. The wells are snap-cooled in liquid nitrogen, stored and shipped in Dewars, and manually or robotically mounted on a goniometer in a cryostream for diffraction data collection at 100 K, as is performed routinely with standard, loop-harvested crystals. The method is a variant on the recently introduced in meso in situ serial crystallography (IMISX) method that enables crystallographic measurements at cryogenic temperatures where crystal lifetimes are enormously enhanced whilst reducing protein consumption dramatically. The new approach has been used to generate high-resolution crystal structures of a G-protein-coupled receptor, α-helical and ß-barrel transporters and an enzyme as model integral membrane proteins. Insulin and lysozyme were used as test soluble proteins. The quality of the data that can be generated by this method was attested to by performing sulfur and bromine SAD phasing with two of the test proteins.


Asunto(s)
Insulina/química , Proteínas de la Membrana/química , Muramidasa/química , Animales , Bacterias/química , Proteínas Bacterianas/química , Pollos , Frío , Cristalización/métodos , Cristalografía por Rayos X/métodos , Modelos Moleculares , Transición de Fase , Solubilidad , Porcinos
18.
Nat Commun ; 5: 4169, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24942835

RESUMEN

Phospholipids have major roles in the structure and function of all cell membranes. Most integral membrane proteins from the large CDP-alcohol phosphatidyltransferase family are involved in phospholipid biosynthesis across the three domains of life. They share a conserved sequence pattern and catalyse the displacement of CMP from a CDP-alcohol by a second alcohol. Here we report the crystal structure of a bifunctional enzyme comprising a cytoplasmic nucleotidyltransferase domain (IPCT) fused with a membrane CDP-alcohol phosphotransferase domain (DIPPS) at 2.65 Å resolution. The bifunctional protein dimerizes through the DIPPS domains, each comprising six transmembrane α-helices. The active site cavity is hydrophilic and widely open to the cytoplasm with a magnesium ion surrounded by four highly conserved aspartate residues from helices TM2 and TM3. We show that magnesium is essential for the enzymatic activity and is involved in catalysis. Substrates docking is validated by mutagenesis studies, and a structure-based catalytic mechanism is proposed.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/enzimología , Membrana Celular/enzimología , Citidina Difosfato/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Archaeoglobus fulgidus/química , Archaeoglobus fulgidus/genética , Biocatálisis , Dominio Catalítico , Membrana Celular/química , Membrana Celular/genética , Cristalografía por Rayos X , Citidina Difosfato/química , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotransferasas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
19.
PLoS One ; 8(10): e76913, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24282478

RESUMEN

BACKGROUND: Membrane proteins play a key role in many fundamental cellular processes such as transport of nutrients, sensing of environmental signals and energy transduction, and account for over 50% of all known drug targets. Despite their importance, structural and functional characterisation of membrane proteins still remains a challenge, partially due to the difficulties in recombinant expression and purification. Therefore the need for development of efficient methods for heterologous production is essential. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen integral membrane transport proteins from Archaea were selected as test targets, chosen to represent two superfamilies widespread in all organisms known as the Major Facilitator Superfamily (MFS) and the 5-Helix Inverted Repeat Transporter superfamily (5HIRT). These proteins typically have eleven to twelve predicted transmembrane helices and are putative transporters for sugar, metabolite, nucleobase, vitamin or neurotransmitter. They include a wide range of examples from the following families: Metabolite-H(+)-symporter; Sugar Porter; Nucleobase-Cation-Symporter-1; Nucleobase-Cation-Symporter-2; and neurotransmitter-sodium-symporter. Overproduction of transporters was evaluated with three vectors (pTTQ18, pET52b, pWarf) and two Escherichia coli strains (BL21 Star and C43 (DE3)). Thirteen transporter genes were successfully expressed; only two did not express in any of the tested vector-strain combinations. Initial trials showed that seven transporters could be purified and six of these yielded quantities of ≥ 0.4 mg per litre suitable for functional and structural studies. Size-exclusion chromatography confirmed that two purified transporters were almost homogeneous while four others were shown to be non-aggregating, indicating that they are ready for up-scale production and crystallisation trials. CONCLUSIONS/SIGNIFICANCE: Here, we describe an efficient strategy for heterologous production of membrane transport proteins in E. coli. Small-volume cultures (10 mL) produced sufficient amount of proteins to assess their purity and aggregation state. The methods described in this work are simple to implement and can be easily applied to many more membrane proteins.


Asunto(s)
Proteínas Arqueales/biosíntesis , Proteínas de Transporte de Membrana/biosíntesis , Archaea/genética , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Cromatografía en Gel , Clonación Molecular , Escherichia coli , Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
20.
FEBS Lett ; 585(17): 2660-4, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21803040

RESUMEN

Siamycin I disrupts growth and quorum sensing in Enterococcus faecalis. Using purified intact protein, we demonstrate here that quorum membrane sensor kinase FsrC is a direct target of siamycin I, reducing pheromone-stimulated autophosphorylation activity by up to 91%. Inhibition was non-competitive with ATP as substrate. Other ATP-binding enzymes were also inhibited, including nine other membrane sensor kinases of E. faecalis, Rhodobacter sphaeroides PrrB, porcine Na(+)-dependent ATPase and the catalytic subunit of bovine protein kinase A, but not bacterial ß-galactosidase, confirming targeted inhibition of a wide range of ATP dependent reactions, and elucidating a likely mechanism underlying the lethality of the inhibitor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/metabolismo , Péptidos/farmacología , Percepción de Quorum/efectos de los fármacos , Adenosina Trifosfatasas/metabolismo , Animales , Bovinos , Enterococcus faecalis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Péptidos y Proteínas de Señalización Intercelular , Cinética , Pruebas de Sensibilidad Microbiana , Fosforilación/efectos de los fármacos , Rhodobacter sphaeroides/efectos de los fármacos , Rhodobacter sphaeroides/metabolismo , Porcinos , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA