Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(13): 9385-9394, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512124

RESUMEN

The shuttling of polysulfides on the cathode and the uncontrollable growth of lithium dendrites on the anode have restricted the practical application of lithium-sulfur (Li-S) batteries. In this study, a metal-coordinated 3D covalent organic framework (COF) with a homogeneous distribution of nickel-bis(dithiolene) and N-rich triazine centers (namely, NiS4-TAPT) was designed and synthesized, which can serve as bifunctional hosts for both sulfur cathodes and lithium anodes in Li-S batteries. The abundant Ni centers and N-sites in NiS4-TAPT can greatly enhance the adsorption and conversion of the polysulfides. Meanwhile, the presence of Ni-bis(dithiolene) centers enables uniform Li nucleation at the Li anode, thereby suppressing the growth of Li dendrites. This work demonstrated the effectiveness of integrating catalytic and adsorption sites to optimize the chemical interactions between host materials and redox-active intermediates, potentially facilitating the rational design of metal-coordinated COF materials for high-performance secondary batteries.

2.
Small ; 20(14): e2308013, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988642

RESUMEN

Redox-active tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two-dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8-connected TTF linker (TTF-8CHO) is designed as a new building block for the construction of three-dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF-8CHO-COF. In comparison to its 2D counterpart employing a 4-connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm-2 808 nm laser, the oxidized 3D COF samples ( I X - ${\mathrm{I}}_{\mathrm{X}}^{-}$ @TTF-8CHO-COF and Au NPs@TTF-8CHO-COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well-exposed TTF moieties.

3.
Angew Chem Int Ed Engl ; 62(27): e202304183, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37154674

RESUMEN

Modulation of the ligands and coordination environment of metal-organic frameworks (MOFs) has been an effective and relatively unexplored avenue for improving the anode performance of lithium-ion batteries (LIBs). In this study, three MOFs are synthesized, namely, M4 (o-TTFOB)(bpm)2 (H2 O)2 (where M is Mn, Zn, and Cd; o-H8 TTFOB is ortho-tetrathiafulvalene octabenzoate; and bpm is 2,2'-bipyrimidine), based on a new ligand o-H8 TTFOB with two adjacent carboxylates on one phenyl, which allows us to establish the impact of metal coordination on the performance of these MOFs as anode materials in LIBs. Mn-o-TTFOB and Zn-o-TTFOB, with two more uncoordinated oxygen atoms from o-TTFOB8- , show higher reversible specific capacities of 1249 mAh g-1 and 1288 mAh g-1 under 200 mA g-1 after full activation. In contrast, Cd-o-TTFOB shows a reversible capacity of 448 mAh g-1 under the same condition due to the lack of uncoordinated oxygen atoms. Crystal structure analysis, cyclic voltammetry measurements of the half-cell configurations, and density functional theory calculations have been performed to explain the lithium storage mechanism, diffusion kinetics, and structure-function relationship. This study demonstrates the advantages of MOFs with high designability in the fabrication of LIBs.

4.
J Am Chem Soc ; 144(18): 8267-8277, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35484687

RESUMEN

Combining the chemistry of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) can bring new opportunities for the design of advanced materials with enhanced tunability and functionality. Herein, we constructed two COFs based on Ni-bis(dithiolene) units and imine bonds, representing a bridge between traditional MOFs and COFs. The Ni-bis(dithiolene)tetrabenzaldehyde as the 4-connected linker was initially synthesized, which was further linked by 4-connected tetra(aminophenyl)pyrene (TAP) or 3-connected tris(aminophenyl)amine (TAA) linkers into two COFs, namely, Ni-TAP and Ni-TAA. Ni-TAP shows a two-dimensional sql network, while TAA is a twofold interpenetrated framework with an ffc topology. They both exhibit a high Brunauer-Emmett-Teller surface area (324 and 689 m2 g-1 for Ni-TAP and Ni-TAA, respectively), a fairly good conductivity (1.57 × 10-6 and 9.75 × 10-5 S m-1 for Ni-TAP and Ni-TAA, respectively), and high chemical stability (a stable pH window of 1-14 for Ni-TAA). When applied in lithium metal batteries as an intermediate layer for guiding the uniform Li electrodeposition, Ni-TAP and Ni-TAA displayed impressive lithiophilicity and high Li-ion conductivity, enabling the achievement of smooth and dense Li deposition with a clear columnar morphology and stable Li plating/stripping behaviors with high Li utilization, which is anticipated to pave the way to upgrade Li metal anodes for application in high-energy-density battery systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA