Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Small ; : e2404012, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022999

RESUMEN

Despite recent revolutionary advancements in photovoltaic (PV) technology, further improving cell efficiencies toward their Shockley-Queisser (SQ) limits remains challenging due to inherent optical, electrical, and thermal losses. Currently, most research focuses on improving optical and electrical performance through maximizing spectral utilization and suppressing carrier recombination losses, while there is a serious lack of effective opto-electro-thermal coupled management, which, however, is crucial for further improving PV performance and the practical application of PV devices. In this article, the energy conversion and loss processes of a PV device (with a specific focus on perovskite solar cells) are detailed under both steady-state and transient processes through rigorous opto-electro-thermal coupling simulation. By innovatively coupling multi-physical behaviors of photon management, carrier/ion transport, and thermodynamics, it meticulously quantifies and analyzes energy losses across optical, electrical, and thermal domains, identifies heat components amenable to regulation, and proposes specific regulatory means, evaluates their impact on device efficiency and operating temperature, offering valuable insights to advance PV technology for practical applications.

2.
Chemistry ; 29(27): e202300320, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36794471

RESUMEN

Most organic thermochromic fluorescent materials exhibit thermo-induced hypsochromic emission due to the formation of excimers in ordered molecular solids; however, it is still a challenge to endow them with bathochromic emission despite its significance in making up the field of thermochromism. Here, a thermo-induced bathochromic emission in columnar discotic liquid crystals is reported realized by intramolecular planarization of the mesogenic fluorophores. A three-armed discotic molecule of dialkylamino-tricyanotristyrylbenzene was synthesized, which preferred to twist out of the core plane to accommodate ordered molecular stacking in hexagonal columnar mesophases, giving rise to bright green monomer emission. However, intramolecular planarization of the mesogenic fluorophores occurred in isotropic liquid increasing the conjugation length, and as a result led to thermo-induced bathochromic emission from green to yellow light. This work reports a new concept in the thermochromic field and provides a novel strategy to achieve fluorescence tuning from intramolecular actions.

3.
Adv Mater ; 36(3): e2308240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967309

RESUMEN

Low-bandgap (LBG, Eg  ≈1.25 eV) tin-lead (Sn-Pb) perovskite solar cells (PSCs) play critical roles in constructing efficient all-perovskite tandem solar cells (TSCs) that can surpass the efficiency limit of single-junction solar cells. However, the traditional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layer (HTL) in LBG PSCs usually restricts device efficiency and stability. Here, a strategy of employing 2-aminoethanesulfonic acid (i.e., taurine) as the interface bridge to fabricate efficient HTL-free LBG PSCs with improved optoelectronic properties of the perovskite absorbers at the buried contacts is reported. Taurine-modified ITO substrate has lower optical losses, better energy level alignment, and higher charge transfer capability than PEDOT:PSS HTL, leading to significantly improved open-circuit voltage (VOC ) and short-circuit current density of corresponding devices. The best-performing LBG PSC with a power conversion efficiency (PCE) of 22.50% and an impressive VOC of 0.911 V is realized, enabling all-perovskite TSCs with an efficiency of 26.03%. The taurine-based HTL-free TSCs have highly increased stability, retaining more than 90% and 80% of their initial PCEs after constant operation under 1-sun illumination for 600 h and under 55 °C thermal stress for 950 h, respectively. This work provides a facile strategy for fabricating efficient and stable perovskite devices with a simplified HTL-free architecture.

4.
J Diabetes ; 16(4): e13549, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584275

RESUMEN

AIMS: Management of blood glucose fluctuation is essential for diabetes. Exercise is a key therapeutic strategy for diabetes patients, although little is known about determinants of glycemic response to exercise training. We aimed to investigate the effect of combined aerobic and resistance exercise training on blood glucose fluctuation in type 2 diabetes patients and explore the predictors of exercise-induced glycemic response. MATERIALS AND METHODS: Fifty sedentary diabetes patients were randomly assigned to control or exercise group. Participants in the control group maintained sedentary lifestyle for 2 weeks, and those in the exercise group specifically performed combined exercise training for 1 week. All participants received dietary guidance based on a recommended diet chart. Glycemic fluctuation was measured by flash continuous glucose monitoring. Baseline fat and muscle distribution were accurately quantified through magnetic resonance imaging (MRI). RESULTS: Combined exercise training decreased SD of sensor glucose (SDSG, exercise-pre vs exercise-post, mean 1.35 vs 1.10 mmol/L, p = .006) and coefficient of variation (CV, mean 20.25 vs 17.20%, p = .027). No significant change was observed in the control group. Stepwise multiple linear regression showed that baseline MRI-quantified fat and muscle distribution, including visceral fat area (ß = -0.761, p = .001) and mid-thigh muscle area (ß = 0.450, p = .027), were significantly independent predictors of SDSG change in the exercise group, as well as CV change. CONCLUSIONS: Combined exercise training improved blood glucose fluctuation in diabetes patients. Baseline fat and muscle distribution were significant factors that influence glycemic response to exercise, providing new insights into personalized exercise intervention for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Glucemia , Automonitorización de la Glucosa Sanguínea , Ejercicio Físico/fisiología , Músculo Esquelético
5.
Adv Mater ; 35(5): e2207293, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36380715

RESUMEN

The high open-circuit voltage (Voc ) loss arising from insufficient surface passivation is the main factor that limits the efficiency of current lead sulfide colloidal quantum dots (PbS CQDs) solar cell. Here, synergistic passivation is performed in the direct synthesis of conductive PbS CQD inks by introducing multifunctional ligands to well coordinate the complicated CQDs surface with the thermodynamically optimal configuration. The improved passivation effect is intactly delivered to the final photovoltaic device, leading to an order lower surface trap density and beneficial doping behavior compared to the control sample. The obtained CQD inks show the highest photoluminescence quantum yield (PLQY) of 24% for all photovoltaic PbS CQD inks, which is more than twice the reported average PLQY value of ≈10%. As a result, a high Voc of 0.71 V and power conversion efficiency (PCE) of 13.3% is achieved, which results in the lowest Voc loss (0.35 eV) for the reported PbS CQD solar cells with PCE >10%, comparable to that of perovskite solar cells. This work provides valuable insights into the future CQDs passivation strategies and also demonstrates the great potential for the direct-synthesis protocol of PbS CQDs.

6.
Adv Mater ; 35(22): e2300352, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36906929

RESUMEN

All-perovskite tandem solar cells (TSCs) hold great promise in terms of ultrahigh efficiency, low manufacturing cost, and flexibility, stepping forward to the next-generation photovoltaics. However, their further development is hampered by the relatively low performance of low-bandgap (LBG) tin (Sn)-lead (Pb) perovskite solar cells (PSCs). Improving the carrier management, including suppressing trap-assisted non-radiative recombination and promoting carrier transfer, is of great significance to enhance the performance of Sn-Pb PSCs. Herein, a carrier management strategy is reported for using cysteine hydrochloride (CysHCl) simultaneously as a bulky passivator and a surface anchoring agent for Sn-Pb perovskite. CysHCl processing effectively reduces trap density and suppresses non-radiative recombination, enabling the growth of high-quality Sn-Pb perovskite with greatly improved carrier diffusion length of >8 µm. Furthermore, the electron transfer at the perovskite/C60 interface is accelerated due to the formation of surface dipoles and favorable energy band bending. As a result, these advances enable the demonstration of champion efficiency of 22.15% for CysHCl-processed LBG Sn-Pb PSCs with remarkable enhancement in both open-circuit voltage and fill factor. When paired with a wide-bandgap (WBG) perovskite subcell, a certified 25.7%-efficient all-perovskite monolithic tandem device is further demonstrated.

7.
ACS Appl Mater Interfaces ; 14(26): 29856-29866, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731691

RESUMEN

Perovskite solar cells (PSCs) own rapidly increasing power conversion efficiencies (PCEs), but their concentrated counterparts (i.e., PCSCs) show a much lower performance. A deeper understanding of PCSCs relies on a thorough study of the intensive energy losses of the device along with increasing the illumination intensity. Taking the low band gap Sn-Pb PCSC as an example, we realize a device-level optoelectronic simulation to thoroughly disclose the internal photovoltaic physics and mechanisms by addressing the fundamental electromagnetic and carrier-transport processes within PCSCs under various concentration conditions. We find that the primary factor limiting the performance improvement of PCSCs is the significantly increased bulk recombination under the increased light concentration, which is attributed mostly to the inferior transport/collection ability of holes determined by the hole transport layer (HTL). We perform further electrical manipulation on the perovskite layer and the HTL so that the carrier-transport capability is significantly improved. Under the optoelectronic design, we fabricate low band gap PCSCs, which exhibit particularly high PCEs of up to 22.36% at 4.17 sun.

8.
Front Endocrinol (Lausanne) ; 13: 937264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903270

RESUMEN

Introduction: Type 2 diabetes patients have abdominal obesity and low thigh circumference. Previous studies have mainly focused on the role of exercise in reducing body weight and fat mass, improving glucose and lipid metabolism, with a lack of evaluation on the loss of muscle mass, diabetes complications, energy metabolism, and brain health. Moreover, whether the potential physiological benefit of exercise for diabetes mellitus is related to the modulation of the microbiota-gut-brain axis remains unclear. Multi-omics approaches and multidimensional evaluations may help systematically and comprehensively correlate physical exercise and the metabolic benefits. Methods and Analysis: This study is a randomized controlled clinical trial. A total of 100 sedentary patients with type 2 diabetes will be allocated to either an exercise or a control group in a 1:1 ratio. Participants in the exercise group will receive a 16-week combined aerobic and resistance exercise training, while those in the control group will maintain their sedentary lifestyle unchanged. Additionally, all participants will receive a diet administration to control the confounding effects of diet. The primary outcome will be the change in body fat mass measured using bioelectrical impedance analysis. The secondary outcomes will include body fat mass change rate (%), and changes in anthropometric indicators (body weight, waist, hip, and thigh circumference), clinical biochemical indicators (glycated hemoglobin, blood glucose, insulin sensitivity, blood lipid, liver enzyme, and renal function), brain health (appetite, mood, and cognitive function), immunologic function, metagenomics, metabolomics, energy expenditure, cardiopulmonary fitness, exercise-related indicators, fatty liver, cytokines (fibroblast growth factor 21, fibroblast growth factor 19, adiponectin, fatty acid-binding protein 4, and lipocalin 2), vascular endothelial function, autonomic nervous function, and glucose fluctuation. Discussion: This study will evaluate the effect of a 16-week combined aerobic and resistance exercise regimen on patients with diabetes. The results will provide a comprehensive evaluation of the physiological effects of exercise, and reveal the role of the microbiota-gut-brain axis in exercise-induced metabolic benefits to diabetes. Clinical Trial Registration: http://www.chictr.org.cn/searchproj.aspx, identifier ChiCTR2100046148.


Asunto(s)
Diabetes Mellitus Tipo 2 , Entrenamiento de Fuerza , Glucemia/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Humanos , Obesidad , Obesidad Abdominal , Ensayos Clínicos Controlados Aleatorios como Asunto , Muslo
9.
Trials ; 22(1): 761, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724966

RESUMEN

BACKGROUND: Sleep deprivation (SD) among young adults is a major public health concern. In humans, it has adverse effects on mood and results in serious health problems. Faced with SD, persons may take precautionary measures to try and reduce their risk. The aim of this study is to evaluate the efficacy and safety of electroacupuncture (EA) for the prevention of negative moods after SD. In addition, we will do a comparison of the effects of EA on mood after SD at different time points. METHODS: This randomized controlled trial (RCT) will be performed at the First Affiliated Hospital of Changchun University of Chinese Medicine in China. The Standards for Reporting Interventions in Clinical Trials of Acupuncture 2010 will be strictly adhered to. Forty-two healthy male volunteers will be distributed into acupoints electroacupuncture (AE) group, non-acupoints electroacupuncture (NAE) control group, or blank control group. This trial will comprise 1-week baseline (baseline sleep), 1-week preventative treatment, 30-h total sleep deprivation (TSD), and 24-h after waking follow-up period. Participants in the AE group and the NAE control group during the preventative treatment period will be administered with EA treatment once daily for 1 week. Participants in the blank control group will not be administered with any treatment. The primary outcome will be the Profile of Mood States (POMS) Scale. Secondary outcome measures will include changes in the Noldus FaceReader (a tool for automatic analysis of facial expressions) and Positive and Negative Affect Schedule (PANAS) Scale. Total sleep deprivation will be 30 h. During the 30-h TSD period, participants will be subjected to 11 sessions of assessment. Adverse events will be recorded. DISCUSSION: This study is designed to evaluate the efficacy and safety of EA for the prevention of negative moods after SD. The results of this trial will allow us to compare the effects of EA on mood after SD at different time points. Moreover, the findings from this trial will be published in peer-reviewed journals. TRIAL REGISTRATION: Chinese Clinical Trial Registry Chi2000039713 . Registered on 06 November 2020.


Asunto(s)
Electroacupuntura , Puntos de Acupuntura , Electroacupuntura/efectos adversos , Humanos , Masculino , Ensayos Clínicos Controlados Aleatorios como Asunto , Método Simple Ciego , Privación de Sueño/diagnóstico , Privación de Sueño/etiología , Privación de Sueño/prevención & control , Resultado del Tratamiento , Adulto Joven
10.
Sci Total Environ ; 736: 139667, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32485388

RESUMEN

Rocky desertification is a process of soil erosion and vegetation destruction. On the surface, the landscape of rocky desertification is similar to that of desertification, which has a negative impact on the social and economic development of Southwest China. To clarify the influence of soil properties on plant diversity in rocky desertification areas, three grades of rocky desertification in Southwest Hunan Province were selected: light rocky desertification (LRD), moderate rocky desertification (MRD) and intense rocky desertification (IRD). Soil pH, soil organic carbon (SOC), N, P, K, Ca, Mg were measured, and the species compositions of herbs and shrubs were investigated. The effects of soil properties on plant diversity were studied by using redundancy analysis (RDA). The results showed that except soil pH and Ca, which increased with rocky desertification grade, the soil component contents were MRD > LRD > IRD. The species richness of shrubs was higher than that of herbs, and the difference was significant in MRD. The diversity of herbs first decreased and then increased, and the distribution became increasingly uniform. By contrast, shrub diversity exhibited an opposing distribution trend. RDA analysis showed that the soil nutrient content differed significantly among the rocky desertification grades. Among the nutrients analysed, N, P and K were the main factors affecting species composition in the rocky desertification areas, and their distribution characteristics partly explained the uneven distributions of herbs and shrubs.


Asunto(s)
Ecosistema , Suelo , Carbono/análisis , China , Conservación de los Recursos Naturales
11.
Sci Total Environ ; 717: 137265, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32092810

RESUMEN

The improvement of regional environmental quality (REQ) not only requires local governments to adopt environmental investment, legislation and law enforcement, but also requires the coordination of government environmental governance and public participation. This study analyses the impact mechanism of government environmental governance, public participation and their coordinated effect on the improvement of REQ, which is a comprehensive indicator measured by the emission of waste gas, waste water and waste solids. After empirical analyses using sample data from 30 provinces in China, the results show that, REQ has been increasingly deteriorating; the effects of government's environmental investment, legislation and law enforcement on REQ improvement are significantly positive, and public participation also helps to stimulate REQ. There also exists a coordinated effect between government environmental governance and public participation. Compared with citizen participation, environmental non-government organisations' participation has a more significant positive effect on REQ improvement. Finally, the influence of government environmental governance and public participation on REQ has significant spatial heterogeneity. The conclusions above can provide inspiration for Chinese government to improve the environmental governance system, which is good for the improvement of REQ.

12.
Inorg Chem ; 35(22): 6530-6538, 1996 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-11666801

RESUMEN

Several cobalt nitrosyl porphyrins of the form (T(p/m-X)PP)Co(NO) (p/m-X = p-OCH(3) (1), p-CH(3) (2), m-CH(3) (3), p-H (4), m-OCH(3) (5), p-OCF(3) (6), p-CF(3) (7), p-CN (8)) have been synthesized in 30-85% yields by reaction of the precursor cobalt porphyrin with nitric oxide. Compounds 1-7 were also prepared by reaction of the precursor cobalt porphyrin with nitrosonium tetrafluoroborate followed by reduction with cobaltocene. Compounds 1-8 have been characterized by elemental analysis, IR and (1)H NMR spectroscopy, mass spectrometry, and UV-vis spectrophotometry. They are diamagnetic and display nu(NO) bands in CH(2)Cl(2) between 1681 and 1695 cm(-)(1). The molecular structure of 1, determined by a single-crystal X-ray crystallographic analysis, reveals a Co-N-O angle of 119.6(4) degrees. Crystals of 1 are monoclinic, P2/c, with a = 15.052(1) Å, b = 9.390(1) Å, c = 16.274(2) Å, beta = 111.04(1) degrees, V = 2146.8(4) Å(3), Z = 2, T = 228(2) K, D(calcd) = 1.271 g cm(-)(3), and final R1 = 0.0599 (wR2 = 0.1567, GOF = 1.054) for 3330 "observed" reflections with I >/= 2sigma(I). Cyclic voltammetry studies in CH(2)Cl(2) reveal that compounds 1-7 undergo two reversible oxidations and two reversible reductions at low temperature. This is not the case for compound 8, which undergoes two reversible reductions but an irreversible oxidation due to adsorption of the oxidized product onto the electrode surface. Combined electrochemistry-infrared studies demonstrate that each of the compounds 1-7 undergoes a first oxidation at the porphyrin pi ring system and a first reduction at either the metal center or the nitrosyl axial ligand. The formulation for the singly oxidized products of compounds 1-7 as porphyrin pi-cation radicals was confirmed by the presence of bands in the 1289-1294 cm(-)(1) region (for compounds 1-5), which are diagnostic IR bands for generation of tetraarylporphyrin pi-cation radicals.

13.
Zhongguo Zhong Yao Za Zhi ; 29(10): 988-92, 2004 Oct.
Artículo en Zh | MEDLINE | ID: mdl-15631091

RESUMEN

OBJECTIVE: To compare the effect of the extracts from Decoction for resuscitation (DRE) and its component herbs on prostacyclin (PGI2), thromboxane A2 (TXA2) and nitric oxide (NO) release from rat vascular endothelial cells under hypoxia. METHOD: After treatment with the extracts from DRE and its component herbs, the contents of 6-keto-prostaglandin F1alpha(6-keto-PGF1alpha), thromboxane B2 (TXB2) as well as nitrite (NO), which were degradation products of PGI2, TXA2 and NO respectively, in culture medium of rat vascular endothelial cells under hypoxia were measured with radioimmunoassay and Griess Reaction. RESULT: Compared with the control group, the results indicated that DRE, prepared licorice root extract (LE), dried ginger extract (GE), aconite root extract (AE), extracts of aconite root and prepared licorice root (ALE), extracts of aconite root and dried ginger (AGE) increased significantly the content of 6-keto-PGF1alpha and the ratio of 6-keto-PGF1alpha/TXB2, but had no effect on the content of TXB2 in culture medium of rat vascular endothelial cells under hypoxia. The content of 6-keto-PGF1alpha in the DRE group was higher than that in the groups of LE, GE, AE, ALE, AGE. The ratio of 6-keto-PGF1alpha/TXB2 in the DRE group was higher than that of the groups of GE, AE, ALE. Compared with the control group, DRE, LE, GE, AE, ALE, AGE increased significantly the content of NO2- in culture medium of rat vascular endothelial cells under hypoxia. Moreover, the content of NO2- in the DRE group was higher than that of the groups of GE, AE, ALE. CONCLUSION: The results suggested that DRE increased significantly the content of PGI2 and the ratio of PGI2/TXA2 as well as the content of NO. The effect of DRE on the parameters in culture medium of rat vascular endothelial cells under hypoxia was better than that of the extracts from its component herbs.


Asunto(s)
6-Cetoprostaglandina F1 alfa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Tromboxano B2/metabolismo , Aconitum/química , Animales , Aorta Abdominal/citología , Hipoxia de la Célula , Medicamentos Herbarios Chinos/aislamiento & purificación , Zingiber officinale/química , Glycyrrhiza uralensis/química , Plantas Medicinales/química , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA