Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14829-14834, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38748984

RESUMEN

So-called Z-scheme systems, which typically comprise an H2 evolution photocatalyst (HEP), an O2 evolution photocatalyst (OEP), and an electron mediator, represent a promising approach to solar hydrogen production via photocatalytic overall water splitting (OWS). The electron mediator transferring photogenerated charges between the HEP and OEP governs the performance of such systems. However, existing electron mediators suffer from low stability, corrosiveness to the photocatalysts, and parasitic light absorption. In the present work, carbon nanotubes (CNTs) were shown to function as an effective solid-state electron mediator in a Z-scheme OWS system. Based on the high stability and good charge transfer characteristics of CNTs, this system exhibited superior OWS performance compared with other systems using more common electron mediators. The as-constructed system evolved stoichiometric amounts of H2 and O2 at near-ambient pressure with a solar-to-hydrogen energy conversion efficiency of 0.15%. The OWS reaction was also promoted in the case that this CNT-based Z-scheme system was immobilized on a substrate. Hence, CNTs are a viable electron mediator material for large-scale Z-scheme OWS systems.

2.
BMC Public Health ; 24(1): 606, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409004

RESUMEN

BACKGROUND: Studies had suggested increased risk of death of residents was associated with typhoons, particularly coastal regions. However, these findings ignored the impact of inland typhoons on the health of residents, especially the indirect death risk caused by typhoons. This study aimed to investigate the acute death risk of residents during inland typhoon Lekima in Jinan, further identify vulnerable populations and areas. METHODS: We selected the daily death from 11 to 27th August 2019 in Jinan as case period, and conducted a time-stratified case-crossover design to match the contemporaneous data from 2016 to 2018 as control period. We used the generalized linear Poisson models to estimate the related effects of death risk during typhoon Lekima and lag days. RESULTS: During the Lekima typhoon month, there were 3,366 deaths occurred in Jinan. Compared to unexposed periods, the acute death risk of non-accidental diseases (especially circulatory diseases), female and the older adults increased significantly in the second week after the typhoon. The maximum significant effect of circulatory disease deaths, female and older adult deaths were appeared on lag9, lag9, and lag13 respectively. And the typhoon-associated RR were 1.19 (95%CI:1.05,1.34), 1.28 (95%CI:1.08,1.52), and 1.22 (95%CI:1.06,1.42) respectively. The acute death risk of residents living in TQ and CQ increased significantly on Lag2 and Lag6 after the typhoon, respectively, while those living in LX, LC, HY, JY, and SH occurred from Lag 8 to Lag 13 after the typhoon. LC lasted the longest days. CONCLUSIONS: Typhoons would increase the vulnerability of residents living in Jinan which mainly occurred from the seventh day after the typhoon. Residents suffering from non-accidental diseases (circulatory diseases), female and the older adults were more vulnerable. The vulnerability of TQ and CQ occurred on Lag2 and Lag6 after typhoon Lekima, respectively, and the other areas except ZQ and PY occurred from Lag 8 to Lag 13. LC lasted the longest duration. Our findings emphasized the importance of the emergency response, which would help policymakers to identify vulnerable regions and populations accurately during typhoons and formulate the emergency response plan.


Asunto(s)
Enfermedades Cardiovasculares , Tormentas Ciclónicas , Anciano , Femenino , Humanos , China/epidemiología , Masculino , Estudios Cruzados
3.
J Am Chem Soc ; 145(7): 3839-3843, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36669205

RESUMEN

The development of narrow-bandgap photocatalysts for one-step-excitation overall water splitting (OWS) remains a critical challenge in the field of solar hydrogen production. SrTaO2N is a photocatalytic material having a band structure suitable for OWS under visible light (λ ≤ 600 nm). However, the presence of defects in the oxynitride and the lack of cocatalysts to promote simultaneous hydrogen and oxygen evolution make it challenging to realize OWS using this material. The present work demonstrates a SrTaO2N-based particulate photocatalyst for OWS. This photocatalyst, which was composed of single crystals, was obtained by nitriding SrCl2 and Ta2O5 together with NaOH, with the latter added to control the formation of defects. The subsequent loading of bimetallic RuIrOx nanoparticles accelerated charge separation and allowed the SrTaO2N photocatalyst to exhibit superior OWS activity. This research presenting the strategies of controlling the oxygen sources and promoting the cocatalyst function is expected to expand the range of potential OWS-active oxynitride photocatalysts and permit the design of efficient cocatalysts for photocatalytic OWS.

4.
Phys Chem Chem Phys ; 25(9): 6586-6601, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789746

RESUMEN

Photocatalytic water splitting has been widely studied as a means of converting solar energy into hydrogen as an ideal energy carrier in the future. Systems for photocatalytic water splitting can be divided into one-step excitation and two-step excitation processes. The former uses a single photocatalyst while the latter uses a pair of photocatalysts to separately generate hydrogen and oxygen. Significant progress has been made in each type of photocatalytic water splitting system in recent years, although improving the solar-to-hydrogen energy conversion efficiency and constructing practical technologies remain important tasks. This perspective summarizes recent advances in the field of photocatalytic overall water splitting, with a focus on the design of photocatalysts, co-catalysts and reaction systems. The associated challenges and potential approaches to practical solar hydrogen production via photocatalytic water splitting are also presented.

5.
Angew Chem Int Ed Engl ; 62(42): e202310607, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37653542

RESUMEN

Photocatalytic water splitting is an ideal means of producing hydrogen in a sustainable manner, and developing highly efficient photocatalysts is a vital aspect of realizing this process. The photocatalyst Y2 Ti2 O5 S2 (YTOS) is capable of absorbing at wavelengths up to 650 nm and exhibits outstanding thermal and chemical durability compared with other oxysulfides. However, the photocatalytic performance of YTOS synthesized using the conventional solid-state reaction (SSR) process is limited owing to the large particle sizes and structural defects associated with this synthetic method. Herein, we report the synthesis of YTOS particles by a flux-assisted technique. The enhanced mass transfer efficiency in the flux significantly reduced the preparation time compared with the SSR method. In addition, the resulting YTOS showed improved photocatalytic H2 and O2 evolution activity when loaded with Rh and Co3 O4 co-catalysts, respectively. These improvements are attributed to the reduced particle size and enhanced crystallinity of the material as well as the slower decay of photogenerated carriers on a nanosecond to sub-microsecond time range. Further optimization of this flux-assisted method together with suitable surface modification is expected to produce high-quality YTOS crystals with superior photocatalytic activity.

6.
Opt Lett ; 47(18): 4790-4793, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107091

RESUMEN

We report on an all-optical ultrasonic detecting method based on differential interference. A linearly polarized probe beam is split into two closely separated ones with orthogonal polarization. After interacting with propagating ultrasonic waves in a coupling media, the split beams are recombined into one beam, with its polarization being changed into an elliptical one by the elastic-optical effect. The recombined beam is filtered by an analyzer and detected by a photodetector. The bandwidth and noise-equivalent pressure (NEP) of the acoustic detector are determined to be 107.4 MHz and 2.18 kPa, respectively. We also demonstrate its feasibility for photoacoustic microscopy (PAM) using agar-embedded phantoms.


Asunto(s)
Técnicas Fotoacústicas , Ultrasonido , Acústica , Agar , Microscopía/métodos , Técnicas Fotoacústicas/métodos
7.
Nanotechnology ; 33(17)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-34996055

RESUMEN

Photocatalytic water splitting is considered to be a feasible method to replace traditional energy. However, most of the catalysts have unsatisfactory performance. In this work, we used a hydrothermal process to grow Ag nanoparticlesin situon g-C3N4nanosheets, and then a high performance catalyst (Ag-g-C3N4) under visible light was obtained. The Ag nanoparticles obtained by this process are amorphous and exhibit excellent catalytic activity. At the same time, the local plasmon resonance effect of Ag can effectively enhance the absorption intensity of visible light by the catalyst. The hydrogen production rate promote to 1035µmol g-1h-1after loaded 0.6 wt% of Ag under the visible light, which was 313 times higher than that of pure g-C3N4(3.3µmol g-1h-1). This hydrogen production rate is higher than most previously reported catalysts which loaded with Ag or Pt. The excellent activity of Ag-g-C3N4is benefited from the Ag nanoparticles and special interaction in each other. Through various analysis and characterization methods, it is shown that the synergy between Ag and g-C3N4can effectively promote the separation of carriers and the transfer of electrons. Our work proves that Ag-g-C3N4is a promising catalyst to make full use of solar energy.

8.
Environ Res ; 214(Pt 3): 114073, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35964671

RESUMEN

OBJECTIVES: We aimed to investigate the acute effect of extreme cold weather on circulatory disease mortality of older adults in Jinan, with individual and regional-scale characteristics as subgroup analyses to further identify vulnerable populations. METHODS: This study contained the death data of Jinan from 2011 to 2020 (Nov-Mar). A time-stratified case-crossover method was used to estimate the effects of extreme cold weather and lags 0-8 days, controlling for holiday and relative humidity. To evaluate the impact of different durations and thresholds of extreme cold weather, we considered 4 cold day and 12 cold wave definitions RESULTS: Our results showed an increase in circulatory disease deaths under several definitions. The number of older adults died of circulatory diseases totaled 92,119 during the study period. In the definitions of cold day, the maximum significant effect ranging from 1.08 (95% CI: 1.03,1.14) to 1.13 (95% CI: 1.04,1.24) and appeared on Lag5 or Lag6. In the definitions of cold wave, the maximum significant effect ranging from 1.07 (95% CI: 1.02, 1.12) to 1.14 (95% CI: 1.03, 1.25). The cold effect is mainly attributable to cold day rather than an added effect related to the duration. Our research confirmed that extreme cold weather had a stronger impact on women [maximum effects with an OR of 1.21 (95% CI: 1.08, 1.36) in P1, 1.19 (95% CI: 1.05, 1.36) in M12)], and the effect gradient increased with age. CONCLUSIONS: Our findings support the evidence on the impact of extreme cold weather on circulatory disease mortality and provide a basis for policymakers to select target groups to develop policies and reduce the public health burden.


Asunto(s)
Enfermedades Cardiovasculares , Frío Extremo , Anciano , Enfermedades Cardiovasculares/epidemiología , China/epidemiología , Frío , Estudios Cruzados , Femenino , Humanos , Tiempo (Meteorología)
9.
Appl Opt ; 61(22): G38-G47, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255862

RESUMEN

Time-domain diffuse optical tomography can efficiently reconstruct both absorption and reduced scattering coefficients but is heavily limited by the ill-posedness in its inverse problem and low spatial resolution. To deal with these adversities, the truncated singular value decomposition (TSVD)-based whole-weighting-matrix inversion scheme can be a particularly suitable implementation. Unfortunately, TSVD is subject to a storage challenge for three-dimensional imaging of a bulk region, such as breast. In this paper, a multi-scale mesh strategy based on computed tomography (CT) anatomical geometry is adopted to solve the storage challenge, where a fine mesh is used in forward calculation to ensure accuracy, and a coarse mesh in the inversion process to enable TSVD-based inversion of the whole-weighting matrix. We validate the proposed strategy using simulated data for a single lesion model from clinical positron emission tomography images of a breast cancer patient, and further, for a complex model that is constructed by setting dual lesions at different separations in the CT breast geometry.


Asunto(s)
Algoritmos , Tomografía Óptica , Humanos , Fantasmas de Imagen , Mallas Quirúrgicas , Tomografía Óptica/métodos , Mama/diagnóstico por imagen
10.
Appl Opt ; 61(22): G48-G56, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255863

RESUMEN

Pharmacokinetic parameter estimation with the support of dynamic diffuse fluorescence tomography (DFT) can provide helpful diagnostic information for tumor differentiation and monitoring. Adaptive extended Kalman filtering (AEKF) as a nonlinear filter method has the merits of high quantitativeness, noise robustness, and initialization independence. In this paper, indirect and direct AEKF schemes combining with a commonly used two-compartment model were studied to estimate the pharmacokinetic parameters based on our self-designed dynamic DFT system. To comprehensively compare the performances of both schemes, the selection of optimal noise covariance matrices affecting estimation results was first studied, then a series of numerical simulations with the metabolic time ranged from 4.16 min to 38 min was carried out and quantitatively evaluated. The comparison results show that the direct AEKF outperforms the indirect EKF in estimation accuracy at different metabolic velocity and demonstrates stronger stability at the large metabolic velocity. Furtherly, the in vivo experiment was conducted to achieve the indocyanine green pharmacokinetic-rate images in the mouse liver. The experimental results confirmed the capability of both schemes to estimate the pharmacokinetic-rate images and were in agreement with the theory predictions and the numerical simulation results.


Asunto(s)
Verde de Indocianina , Tomografía , Ratones , Animales , Fluorescencia , Tomografía/métodos , Simulación por Computador , Tomografía Computarizada por Rayos X
11.
Nanotechnology ; 32(50)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34587592

RESUMEN

Trace poisonous and harmful gases in the air have been harming and affecting people's health for a long time. At present, effective and accurate detection of ppb-level harmful gas is still a bottleneck to be overcome. Herein, we report a ppb-level triethylamine (TEA) gas sensor based on p-n heterojunction of Co3O4/WO3, which is prepared with ZIF-67 as the precursor and provides Co3O4deposited tungsten oxide flower-like structure. Due to the introduction of Co3O4and the 3D flower-like structure of WO3, the Co3O4/WO3-2 gas sensor shows excellent gas sensing performance (1101 for 10 ppm at 240 °C), superb selectivity, good long-term stability and linear response for TEA concentration. Moreover, the experimental results indicate that the Co3O4/WO3-2 gas sensor also possesses a good response to 50 ppb TEA, in fact, the theoretical limit of detection is 0.6 ppb. Co3O4not only improves the efficiency of electron separation/transport, but also accelerates the oxidation rate of TEA. This method of synthesizing p-n heterojunction with ZIF as the precursor provides a new idea and method for the preparation of low detection limit gas sensors.

12.
Mediators Inflamm ; 2020: 1724206, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33456369

RESUMEN

Ischemia reperfusion (IR) can lead to acute kidney injury and can be complicated by acute lung injury, which is one of the leading causes of acute kidney injury-related death. Peptidyl arginine deiminase-4 (PAD4) is a member of the PAD enzyme family and plays a critical role in inflammatory reactions and neutrophil extracellular trap formation in a variety of pathological conditions. It has been reported that PAD4 inhibition can protect certain organs from ischemic injury. In this study, we aimed to understand the mode of action of PAD4 in renal ischemia-reperfusion-mediated acute lung injury. Bilateral renal pedicle occlusion was induced for 30 min followed by reperfusion for 24 h. A specific inhibitor of PAD4, GSK484, was delivered via intraperitoneal injection to alter the PAD4 activity. The pulmonary PAD4 expression, pulmonary impairment, neutrophil infiltration, Cit-H3 expression, neutrophil extracellular trap formation, inflammatory cytokine secretion, and pulmonary apoptosis were analyzed. We found that renal ischemia reperfusion was associated with pulmonary pathological changes and increases in neutrophil infiltration, neutrophil extracellular trap formation, and inflammatory cytokine secretion in the lungs of the recipient animals. Suppression of PAD4 by GSK484 reduced remote lung injury by mitigating neutrophil infiltration, neutrophil extracellular trap formation, apoptosis, and inflammatory factor secretion. Our findings demonstrate that specific PAD4 inhibition by GSK484 may be an effective strategy to attenuate distant lung injury complicating renal ischemia-reperfusion injury.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Pulmón/efectos de los fármacos , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Trampas Extracelulares , Inflamación , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo
13.
Opt Express ; 27(21): 30700-30709, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684314

RESUMEN

Light intensity fluctuations and phase randomness in quadrature demodulation disturb the accuracy of frequency modulation spectroscopy. The proposed self-corrected method eliminated these effects: the profile of correctly demodulated signals identified whether a demodulation was phase matched and corrected a phase-mismatched demodulated signal; we extracted the measured signal's direct current component and corrected the light intensity fluctuation. We conducted theoretical analysis and experimental verification to reduce light-intensity errors by 16.8% under different intensity conditions and obtained spectral features by phase difference corrections under the same measurement conditions. We reduced the effect of light intensity fluctuation and demodulated signals were freed from phase stability limitations.

14.
Arch Biochem Biophys ; 670: 94-103, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31255694

RESUMEN

Chaetocin is a fungal metabolite that possesses a potential anti-inflammatory activity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. However, the effect of cheatocin on gout has not been elucidated. In the study, we found that chaetocin could decrease MSU induced IL-1ß secretion in bone marrow derived macrophages by several mechanisms, including inhibiting the activation of NLRP3 inflammasome. Chaetocin negatively regulated apoptosis-associated speck-like protein with a CARD domain oligomerization, and caspase-1 processing, key events during inflammasome activation. Furthermore, chaetocin restrain expressions of Hypoxia-inducible factor-1α and Hexokinase 2, mediators of glycolysis, which necessary for synthesis of pro-IL-1ß during inflammasome priming. In vivo, chaetocin ameliorate MSU-induced arthritis, which showed as reduced local swelling and inflammatory cell infiltration. In MSU-induced peritonitis model, the peritoneal macrophages of chaetocin-pretreated mice showed significantly decreased mRNA levels of HIF-1α and NLRP3 related genes. These findings suggested that chaetocin has a potent anti-inflammatory effect against gout. More importantly, it is proposed that the inhibiting of glycolysis pathway would be a new avenue for the treatment of gout flare and other IL-1ß related diseases.


Asunto(s)
Gota/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Gota/inmunología , Gota/metabolismo , Interleucina-1beta/biosíntesis , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Piperazinas/farmacología , Piperazinas/uso terapéutico
15.
Analyst ; 144(11): 3567-3572, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31062786

RESUMEN

Tobacco smoke is a complex mixture consisting of hundreds of toxic and carcinogenic chemicals, which may cause many diseases once inhaled. Among these toxic substances, radioactive and non-radioactive heavy metals present great health concerns to both active and passive smokers. However, conventional methodologies for characterizing heavy metals in smoke require intensive and time-consuming preparation procedures, and thus prevent their on-line applications. We report here a portable laser-induced breakdown spectroscopy (PLIBS) device for on-line detection of radioactive and non-radioactive heavy metals in tobacco smoke with ultra-high sensitivity. Two local cigarette brands were investigated, and a number of heavy metals were detected. In particular, several radioactive metals show very strong atomic emissions, and a limit of detection down to parts per trillion was obtained by single-shot PLIBS. The linear dependencies of their spectral intensities on the smoke concentrations were revealed, suggesting that the PLIBS is a promising tool for high-throughput and quantitative analysis of heavy metals in tobacco smoke. Tobacco emission dynamics were also investigated, and the results suggest the potential applications of the PLIBS in smoke risk assessment.

16.
Cell Mol Biol Lett ; 24: 62, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798643

RESUMEN

BACKGROUND: Myocardial ischaemia reperfusion injury (MIRI) is a difficult problem in clinical practice, and it may involve various microRNAs. This study investigated the role that endogenous microRNA-146a plays in myocardial ischaemia reperfusion and explored the possible target genes. METHODS: MIRI models were established in microRNA-146a deficient (KO) and wild type (WT) mice. MicroRNA-146a expression was evaluated in the myocardium of WT mice after reperfusion. The heart function, area of myocardium infarction and in situ apoptosis were compared between the KO and WT mice. Microarray was used to explore possible target genes of microRNA-146a, while qRT-PCR and dual luciferase reporter assays were used for verification. Western blotting was performed to detect the expression levels of the target gene and related signalling molecules. A rescue study was used for further testing. RESULTS: MicroRNA-146a was upregulated 1 h after reperfusion. MicroRNA-146a deficiency decreased heart function and increased myocardial infarction and apoptosis. Microarray detected 19 apoptosis genes upregulated in the KO mice compared with the WT mice. qRT-PCR and dual luciferase verified that Med1 was one target gene of microRNA-146a. TRAP220, encoded by Med1 in the KO mice, was upregulated, accompanied by an amplified ratio of Bax/Bcl2 and increased cleaved caspase-3. Inhibition of microRNA-146a in H9C2 cells caused increased TRAP220 expression and more apoptosis under the stimulus of hypoxia and re-oxygenation, while knockdown of the increased TRAP220 expression led to decreased cell apoptosis. CONCLUSIONS: MicroRNA-146a exerts a protective effect against MIRI, which might be partially mediated by the target gene Med1 and related to the apoptosis signalling pathway.


Asunto(s)
Subunidad 1 del Complejo Mediador/genética , MicroARNs/genética , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Pruebas de Función Cardíaca , Masculino , Subunidad 1 del Complejo Mediador/antagonistas & inhibidores , Subunidad 1 del Complejo Mediador/metabolismo , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
17.
Cell Physiol Biochem ; 46(2): 847-859, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29635244

RESUMEN

BACKGROUND/AIMS: Metadherin (MTDH) is overexpressed in some malignancies and enhances drug resistance; however, its role in gastric cancer (GC) and the underlying mechanisms remain largely unexplored. Here, we explore the mechanism by which MTDH induces drug resistance in GC. METHODS: We analysed the level of MTDH in GC and adjacent normal gastric mucosal tissues by real-time quantitative PCR (q-PCR). We also analysed the level of autophagy by western blot analysis, confocal microscopy, and transmission electron microscopy after MTDH knockdown and overexpression, and examined fluorouracil (5-FU) resistance by Cell Counting Kit-8 at the same time. Finally, GC patient-derived xenograft tumours were used to demonstrate 5-FU resistance. An AMPK pathway inhibitor was applied to determine the molecular mechanisms of autophagy. RESULTS: MTDH expression was significantly increased in the GC specimens compared with that in the adjacent normal gastric mucosal tissues. Further study showed a positive correlation between the expression level of MTDH and 5-FU resistance. MTDH overexpression in MKN45 cells increased the levels of P-glycoprotein (P-gp) and promoted 5-FU resistance, while inhibition of MTDH showed the opposite result. The simultaneous inhibition of autophagy and overexpression of MTDH decreased the levels of P-gp and inhibited 5-FU resistance. Moreover, MTDH induced AMPK phosphorylation, regulated ATG5 expression, and finally influenced autophagy, suggesting that MTDH may activate autophagy via the AMPK/ATG5 signalling pathway. Our findings reveal a unique mechanism by which MTDH promotes GC chemoresistance and show that MTDH is a potential target for improved chemotherapeutic sensitivity and GC patient survival. CONCLUSIONS: MTDH-stimulated cancer resistance to 5-FU may be mediated through autophagy activated by the AMPK/ATG5 pathway in GC.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia , Moléculas de Adhesión Celular/metabolismo , Neoplasias Gástricas/patología , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Autofagia/efectos de los fármacos , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Fluorouracilo/uso terapéutico , Fluorouracilo/toxicidad , Humanos , Inmunohistoquímica , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos BALB C , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Transducción de Señal , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Trasplante Heterólogo
18.
Sensors (Basel) ; 18(10)2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30249970

RESUMEN

This paper presents a mid-infrared dimethyl sulfide (CH3SCH3, DMS) sensor based on tunable laser absorption spectroscopy with a distributed feedback interband cascade laser to measure DMS in the atmosphere. Different from previous work, in which only DMS was tested and under pure nitrogen conditions, we measured DMS mixed by common air to establish the actual atmospheric measurement environment. Moreover, we used tunable laser absorption spectroscopy with spectral fitting to enable multi-species (i.e., DMS, CH4, and H2O) measurement simultaneously. Meanwhile, we used empirical mode decomposition and greatly reduced the interference of optical fringes and noise. The sensor performances were evaluated with atmospheric mixture in laboratory conditions. The sensor's measurement uncertainties of DMS, CH4, and H2O were as low as 80 ppb, 20 ppb, and 0.01% with an integration time 1 s, respectively. The sensor possessed a very low detection limit of 9.6 ppb with an integration time of 164 s for DMS, corresponding to an absorbance of 7.4 × 10-6, which showed a good anti-interference ability and stable performance after optical interference removal. We demonstrated that the sensor can be used for DMS measurement, as well as multi-species atmospheric measurements of DMS, H2O, and CH4 simultaneously.

19.
Angew Chem Int Ed Engl ; 57(31): 9749-9753, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29901252

RESUMEN

Polymeric carbon nitride (PCN) photosensitizers are proposed replacements for their inorganic counterparts in solar-to-fuel conversion via photoelectrochemical water splitting. However, intense charge recombination, primarily because of surface defects, limits the use of PCN in PEC systems. Now, photoanodes are designed by coating PCN films onto highly conductive yttrium-doped zinc oxide (Y:ZnO) nanorods (NRs) serving as charge collectors. The generation of charge carriers can therefore be promoted by this type II alignment. The charge collectors would be kept nearby for charge separation and transport to be used in the interfacial redox reactions. The photocurrent density of the polymer electrode is improved to 0.4 mA cm-2 at 1.23 V vs. the reversible hydrogen electrode in a Na2 SO4 electrolyte solution under AM 1.5 illumination. The result reveals a more than 50-fold enhancement over the PCN films achieved by powder; the efficiency can be preserved at 95 % for 160 minutes.

20.
Sensors (Basel) ; 17(2)2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28212311

RESUMEN

Detection of methyl mercaptan (CH3SH) is essential for environmental atmosphere assessment and exhaled-breath analysis. This paper presents a sensitive CH3SH sensor based on wavelength modulation spectroscopy (WMS) with a mid-infrared distributed feedback interband cascade laser (DFB-ICL). Multicomponent spectral fitting was used not only to enhance the sensitivity of the sensor but also to determine the concentration of interferents (atmospheric water and methane). The results showed that the uncertainties in the measurement of CH3SH, H2O, and CH4 were less than 1.2%, 1.7% and 2.0%, respectively, with an integration time of 10 s. The CH3SH detection limit was as low as 7.1 ppb with an integration time of 295 s. Overall, the reported sensor, boasting the merits of high sensitivity, can be used for atmospheric methyl mercaptan detection, as well as multiple components detection of methyl mercaptan, water, and methane, simultaneously.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA