Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 67: 104-114, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29778142

RESUMEN

This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process.


Asunto(s)
Carbón Orgánico/química , Modelos Químicos , Tolueno/química , Adsorción , Cinética
2.
Ultrason Sonochem ; 40(Pt A): 543-551, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28946456

RESUMEN

Nano-metal binary oxides were prepared by the combined method of complexation and impregnation in ultrasonic intervention for low temperature catalytic oxidation of toluene under microwave radiation. Activity differences of prepared samples were evaluated using the removal rate and the mineralization rate as assessment criteria. Results show that the sample derived from the introduction of La and intervention of ultrasonic presents the best catalytic performance, which the removal rate of 80% can be obtained at 120°C and the mineralization rate of 97% can be obtained at 210°C. Compared with the worst sample at low temperature, maximum increases of removal rate and mineralization rate using the sample of La-Co (US) are 3.47 and 11.79 times respectively. Lowest values of T90 based on removal rate and mineralization rate are 140°C and 195°C, respectively. Compared with the sample that ultrasonic treatment is not applied in impregnation process, maximum increases of removal rate and mineralization rate using the sample of La-Co (US) are 17.43% and 85.19% respectively. Moreover, Diagrams of XRD, EDX and TEM indicate that metal binary oxides nano-particles are synthesized successfully. The data of SEM and XPS manifests that the sample of La-Co (US) possesses the smallest particle size distribution, the highest levels of the Co2+/Co3+ and the Olatt/Oads. In addition, significant differences of catalytic activities are not observed after three cycles indicating that the sample possesses good stability and recycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA