Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer Sci ; 115(3): 763-776, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243657

RESUMEN

Hepatocellular carcinoma (HCC) does not respond well to current treatments, even immune checkpoint inhibitors. PD-L1 (programmed cell death ligand 1 or CD274 molecule)-mediated immune escape of tumor cells may be a key factor affecting the efficacy of immune checkpoint inhibitor (ICI) therapy. However, the regulatory mechanisms of PD-L1 expression and immune escape require further exploration. Here, we observed that DDX1 (DEAD-box helicase 1) was overexpressed in HCC tissues and associated with poor prognosis in patients with HCC. Additionally, DDX1 expression correlated negatively with CD8+ T cell frequency. DDX1 overexpression significantly increased interferon gamma (IFN-γ)-mediated PD-L1 expression in HCC cell lines. DDX1 overexpression decreased IFN-γ and granzyme B production in CD8+ T cells and inhibited CD8+ T cell cytotoxic function in vitro and in vivo. In conclusion, DDX1 plays an essential role in developing the immune escape microenvironment, rendering it a potential predictor of ICI therapy efficacy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linfocitos T CD8-positivos , ARN Helicasas DEAD-box/metabolismo , Interferón gamma/metabolismo , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral
2.
Metab Eng ; 64: 95-110, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33493644

RESUMEN

Methanol is assimilated through the serine cycle to generate acetyl-CoA without carbon loss. However, a highly active serine cycle requires high consumption of reducing equivalents and ATP, thereby leading to the impaired efficiency of methanol conversion to reduced chemicals. In the present study, a genome-scale flux balance analysis (FBA) predicted that the introduction of the heterologous ribulose monophosphate (RuMP) cycle, a more energy-efficient pathway for methanol assimilation, could theoretically increase growth rate by 31.3% for the model alphaproteobacterial methylotroph Methylorubrum extorquens AM1. Based on this analysis, we constructed a novel synergistic assimilation pathway in vivo by incorporating the RuMP cycle into M. extroquens metabolism with the intrinsic serine cycle. We demonstrated that the operation of the synergistic pathway could increase cell growth rate by 16.5% and methanol consumption rate by 13.1%. This strategy rewired the central methylotrophic metabolism through adjusting core gene transcription, leading to a pool size increase of C2 to C5 central intermediates by 1.2- to 3.6-fold and an NADPH cofactor improvement by 1.3-fold. The titer of 3-hydroxypropionic acid (3-HP), a model product in the newly engineered chassis of M. extorquens AM1, was increased to 91.2 mg/L in shake-flask culture, representing a 3.1-fold increase compared with the control strain with only the serine cycle. The final titer of 3-HP was significantly improved to 0.857 g/L in the fed-batch bioreactor, which was more competitive compared with the other 3-HP producers using methane and CO2 as C1 sources. Collectively, our current study demonstrated that engineering the synergistic methanol assimilation pathway was a promising strategy to increase the carbon assimilation and the yields of reduced chemicals in diverse host strains for C1 microbial cell factories.


Asunto(s)
Metanol , Methylobacterium extorquens , Acetilcoenzima A , Methylobacterium extorquens/genética , Pentosas
3.
J Sci Food Agric ; 99(5): 2622-2628, 2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-30417388

RESUMEN

BACKGROUND: The fungal pathogen Botrytis cinerea infects a broad range of horticultural plants worldwide, resulting in significant economic losses. A derivative of chitosan, oligochitosan, has been reported to be an eco-friendly alternative to synthetic fungicides. RESULTS: Oligochitosan can greatly inhibit B. cinerea spore germination and induce protein carbonylation. To further investigate the molecular mechanism underlying the inhibitory effect, a comparative proteome analysis was conducted of oligochitosan-treated versus non-treated B. cinerea spores. The cellular proteins were obtained from B. cinerea spore samples and subjected to two-dimensional gel electrophoresis. In total, 21 differentially expressed proteins (DEPs) were identified. Three DEPs were up-regulated in the oligochitosan-treated versus the untreated spores, including scytalone dehydratase and a serine carboxypeptidase III precursor. By contrast, seven DEPs, including Hsp 88 and cell division cycle protein 48, were down-regulated by oligochitosan treatment. Notably, 10 DEPs, including phosphatidylserine decarboxylase proenzyme and ATP-dependent molecular chaperone HSC82, were only detected in the control spores, whereas one DEP, a non-annotated predicted protein, was only detected in the oligochitosan-treated spores. CONCLUSION: Oligochitosan may affect the spore germination of B. cinerea by impairing protein function. These findings have practical implications with respect to the use of oligochitosan for controlling fungal pathogens. © 2018 Society of Chemical Industry.


Asunto(s)
Botrytis/efectos de los fármacos , Quitina/análogos & derivados , Proteínas Fúngicas/química , Fungicidas Industriales/farmacología , Botrytis/química , Botrytis/genética , Botrytis/metabolismo , Quitina/farmacología , Quitosano , Electroforesis en Gel Bidimensional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micelio/efectos de los fármacos , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Oligosacáridos , Proteómica
4.
Bioresour Technol ; 393: 130104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008225

RESUMEN

This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.


Asunto(s)
Ácido Láctico/análogos & derivados , Methylobacterium , Methylobacterium/genética , Methylobacterium/metabolismo , Fermentación , Metanol/metabolismo , Adenosina Trifosfato/metabolismo , Ingeniería Metabólica/métodos
5.
Front Oncol ; 13: 1182434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346073

RESUMEN

Background: Liver hepatocellular carcinoma (LIHC) is a highly malignant tumor with high metastasis and recurrence rates. Due to the relation between lipid metabolism and the tumor immune microenvironment is constantly being elucidated, this work is carried out to produce a new prognostic gene signature that incorporates immune profiles and lipid metabolism of LIHC patients. Methods: We used the "DEseq2" R package and the "Venn" R package to identify differentially expressed genes related to lipid metabolism (LRDGs) in LIHC. Additionally, we performed unsupervised clustering of LIHC patients based on LRDGs to identify their subgroups and immuno-infiltration and Gene Ontology (GO) enrichment analysis on the subgroups. Next, we employed multivariate, LASSO and univariate Cox regression analyses to determine variables and to create a prognostic profile on the basis of immune- and lipid metabolism-related differential genes (IRDGs and LRDGs). We separated patients into low- and high-risk groups in accordance with the best cut-off value of risk score. We conducted Decision Curve Analysis (DCA), Receiver Operating Characteristic curve analysis as a function of time as well as Survival Analysis to evaluate this signature's prognostic value. We incorporated the clinical characteristics of patients into the risk model to obtain a nomogram prognostic model. GEO14520 and ICGC-LIRI JP datasets were employed to externally confirm the accuracy and robustness of signature. The gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were applied for investigating the underlying mechanisms. Immune infiltration analysis was implemented to examine the differences in immune between both risk groups. Single-cell RNA sequencing (scRNA-SEQ) was utilized to characterize the genes that were involved in the distribution of signature and expression characteristics of different LIHC cell types. The patients' sensitivity in both risk groups to commonly used chemotherapeutic agents and semi-inhibitory concentrations (IC50) of the drugs was assessed using the GDSC database. On the basis of the differentially expressed genes (DEGs) in the two groups, the CMAP database was adopted for the prediction of potential small-molecule compounds. Small-molecule compounds were molecularly docked with prognostic markers. Lastly, we investigated the prognostic gene expression levels in normal and LIHC tissues with immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction(qRT-PCR). Results: We built and verified a prognostic signature with seven genes that incorporated immune profiles and lipid metabolism. Patients were classified as low- and high-risk groups depending on their prognostic profiles. The overall survival (OS) was markedly lower in the high-risk group as compared to low-risk group. Time-dependent ROC curves more precisely predicted patients' survival at 1, 3 and 5 years; the area under the ROC curve was 0.81 (1 year), 0.75 (3 years) and 0.77 (5 years). The DCA curves showed the value of the prognostic genes in this signature for clinical applications. We included the patients' clinical characteristics in the risk model for both multivariate and univariate Cox regression analyses, and the findings revealed that the risk model represents an independent factor that influences OS in LIHC patients. With immune analysis, GSVA and GSEA, we identified that there are remarkable differences between the two risk groups in immune pathways, lipid metabolism, tumor development, immune cell infiltration and immune microenvironment, response to immunotherapy, and sensitivity to chemotherapy. Moreover, those with higher risk scores presented greater sensitivity to the chemotherapeutic agents. Experiments in vitro further elucidated the roles of SPP1 and FLT3 in the LIHC immune microenvironment. Furthermore, four small-molecule drugs that could target LIHC were screened. In vitro qRT-PCR , IHC revealed that the SPP1,KIF18A expressions were raised in LIHC in tumor samples, whereas FLT3,SOCS2 showed the opposite trend. Conclusions: We developed and verified a new signature comprising immune- and lipid metabolism-associated markers and to assess the prognosis and the immune status of LIHC patients. This signature can be applied to survival prediction, individualized chemotherapy, and immunotherapeutic guidance for patients with liver cancer. This study also provides potential targeted therapeutics and novel ideas for the immune evasion and progression of LIHC.

6.
Front Immunol ; 14: 1294677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235128

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a malignant tumor with a high rate of recurrence and m metastasis that does not respond well to current therapies and has a very poor prognosis. Disulfidptosis is a novel mode of cell death that has been analyzed as a novel therapeutic target for HCC cells. Methods: This study integrated bulk ribonucleic acid (RNA) sequencing datasets, spatial transcriptomics (ST), and single-cell RNA sequencing to explore the landscape of disulfidptosis and the immune microenvironment of HCC cells. Results: We developed a novel model to predict the prognosis of patients with HCC based on disulfidptosis. The model has good stability, applicability, and prognostic and immune response prediction abilities. N-myc downregulated gene1 (NDRG1) may contribute to poor prognosis by affecting macrophage differentiation, thus allowing HCC cells to evade the immune system. Conclusion: Our study explores the disulfidptosis of HCC cells through multi-omics and establishes a new putative model that explores possible targets for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Muerte Celular , Línea Celular , Inmunoterapia , Microambiente Tumoral
7.
Biotechnol J ; 16(6): e2000413, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33595188

RESUMEN

BACKGROUND: Methylorubrum extorquens AM1 can be engineered to convert methanol to value-added chemicals. Most of these chemicals derive from acetyl-CoA involved in the serine cycle. However, recent studies on methylotrophic metabolism have suggested that C3 pyruvate is a good potential precursor for broadening the types of synthesized products. METHODS AND RESULTS: In the present study, we found that isobutanol was a model chemical that could be generated from pyruvate through a 2-keto acid pathway. Initially, the engineered M. extorquens AM1 could only produce a trace amount of isobutanol at 0.62 mgL-1 after introducing the heterologous 2-ketoisovalerate decarboxylase and alcohol dehydrogenase. Furthermore, the metabolomic analysis revealed that insufficient carbon fluxes through 2-ketoisovalerate and pyruvate were the key limitation steps for efficient biosynthesis of isobutanol. Based on this analysis, the titer of isobutanol was improved by over 20-fold after overexpressing alsS gene encoding acetolactate synthase and deleting ldhA gene for lactate dehydrogenase. Moreover, substituting the cell chassis with the isobutanol-tolerant strain isolated from adaptive evolution of M. extorquens AM1 further increased the production of isobutanol by 1.7-fold, resulting in the final titer of 19 mgL-1 in flask cultivation. CONCLUSION: Our current findings provided promising insights into engineering methylotrophic cell factories capable of converting methanol to isobutanol or value-added chemicals using pyruvate as the precursor.


Asunto(s)
Metanol , Methylobacterium extorquens , Butanoles , Metabolómica , Methylobacterium extorquens/genética
8.
Bioresour Technol ; 235: 79-86, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28365352

RESUMEN

To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL-1, respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production.


Asunto(s)
Fermentación , Aguas Residuales , Ácido Araquidónico/biosíntesis , Ácidos Grasos Insaturados , Mortierella
9.
Sci Rep ; 5: 14446, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26403200

RESUMEN

Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.


Asunto(s)
Frío , Ácidos Docosahexaenoicos/biosíntesis , Regulación de la Expresión Génica , Estramenopilos/genética , Estramenopilos/metabolismo , Transcriptoma , Biología Computacional/métodos , Ácidos Grasos/biosíntesis , Ácidos Grasos/química , Perfilación de la Expresión Génica , Glucosa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Metabolismo de los Lípidos , Reproducibilidad de los Resultados
10.
Carbohydr Polym ; 94(1): 272-7, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23544538

RESUMEN

The effects of chitosan and oligachitosan on resistance induction of peach fruit against brown rot caused by Monilinia fructicola were investigated. Both chitosan and oligochitosan showed significant effect on controlling this disease. Moreover, chitosan and oligochitosan delayed fruit softening and senescence. The two antifungal substances enhanced antioxidant and defense-related enzymes, such as catalase (CAT), peroxidase (POD), ß-1,3-glucanase (GLU) and chitinase (CHI), and they also stimulated the transcript expression of POD and GLU. These findings suggest that the effects of chitosan and oligochitosan on disease control and quality maintenance of peach fruit may be associated with their antioxidant property and the elicitation of defense responses in fruit.


Asunto(s)
Antifúngicos/farmacología , Quitina/análogos & derivados , Quitosano/farmacología , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Prunus/microbiología , Catalasa/genética , Catalasa/metabolismo , Quitina/farmacología , Quitinasas/genética , Quitinasas/metabolismo , Resistencia a la Enfermedad , Calidad de los Alimentos , Frutas/enzimología , Expresión Génica , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Oligosacáridos , Peroxidasa/genética , Peroxidasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus/enzimología , Levaduras/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA