Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 208(3): 603-617, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022277

RESUMEN

MicroRNAs (miRNAs/miRs) are small, endogenous noncoding RNAs that are important post-transcriptional regulators with clear roles in the development of the immune system and immune responses. Using miRNA microarray profiling, we characterized the expression profile of naive and in vivo generated murine effector antiviral CD8+ T cells. We observed that out of 362 measurable mature miRNAs, 120 were differentially expressed by at least 2-fold in influenza-specific effector CD8+ CTLs compared with naive CD8+ T cells. One miRNA found to be highly downregulated on both strands in effector CTLs was miR-139. Because previous studies have indicated a role for miR-139-mediated regulation of CTL effector responses, we hypothesized that deletion of miR-139 would enhance antiviral CTL responses during influenza virus infection. We generated miR-139-/- mice or overexpressed miR-139 in T cells to assess the functional contribution of miR-139 expression in CD8+ T cell responses. Our study demonstrates that the development of naive T cells and generation or differentiation of effector or memory CD8+ T cell responses to influenza virus infection are not impacted by miR-139 deficiency or overexpression; yet, miR-139-/- CD8+ T cells are outcompeted by wild-type CD8+ T cells in a competition setting and demonstrate reduced responses to Listeria monocytogenes Using an in vitro model of T cell exhaustion, we confirmed that miR-139 expression similarly does not impact the development of T cell exhaustion. We conclude that despite significant downregulation of miR-139 following in vivo and in vitro activation, miR-139 expression is dispensable for influenza-specific CTL responses.


Asunto(s)
Virus de la Influenza A/inmunología , Listeria monocytogenes/inmunología , MicroARNs/genética , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Regulación hacia Abajo/genética , Femenino , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología
2.
Hum Mol Genet ; 24(17): 4948-57, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26060190

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting carriers of the fragile X-premutation, who have an expanded CGG repeat in the 5'-UTR of the FMR1 gene. FXTAS is characterized by progressive development of intention tremor, ataxia, parkinsonism and neuropsychological problems. The disease is thought to be caused by a toxic RNA gain-of-function mechanism, and the major hallmark of the disease is ubiquitin-positive intranuclear inclusions in neurons and astrocytes. We have developed a new transgenic mouse model in which we can induce expression of an expanded repeat in the brain upon doxycycline (dox) exposure (i.e. Tet-On mice). This Tet-On model makes use of the PrP-rtTA driver and allows us to study disease progression and possibilities of reversibility. In these mice, 8 weeks of dox exposure was sufficient to induce the formation of ubiquitin-positive intranuclear inclusions, which also stain positive for the RAN translation product FMRpolyG. Formation of these inclusions is reversible after stopping expression of the expanded CGG RNA at an early developmental stage. Furthermore, we observed a deficit in the compensatory eye movements of mice with inclusions, a functional phenotype that could be reduced by stopping expression of the expanded CGG RNA early in the disease development. Taken together, this study shows, for the first time, the potential of disease reversibility and suggests that early intervention might be beneficial for FXTAS patients.


Asunto(s)
Ataxia/genética , Ataxia/fisiopatología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Temblor/genética , Temblor/fisiopatología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Movimientos Oculares/genética , Expresión Génica , Genes Reporteros , Humanos , Cuerpos de Inclusión Intranucleares/patología , Ratones , Ratones Transgénicos , Péptidos/metabolismo , Unión Proteica , Transporte de Proteínas , Expansión de Repetición de Trinucleótido , Ubiquitina/metabolismo
3.
PLoS Genet ; 9(4): e1003431, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637614

RESUMEN

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda(-/-) ) mouse-model resembling TTD-A patients. Unexpectedly, Ttda(-/-) mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda(-/-) cells was not affected. Surprisingly, Ttda(-/-) cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda(-/-) cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda(-/-) cells as a unique class of TFIIH mutants.


Asunto(s)
Reparación del ADN , Síndromes de Tricotiodistrofia , Animales , Síndrome de Cockayne , Humanos , Mutación , Factor de Transcripción TFIIH/genética , Factores de Transcripción/genética , Transcripción Genética , Síndromes de Tricotiodistrofia/genética
4.
PLoS Genet ; 7(12): e1002405, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22174697

RESUMEN

Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR-deficient Csa(-/-) and Csb(-/-) CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER-deficient Xpa(-/-) and Xpc(-/-) XP mice, but also occurred in Xpd(XPCS) mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR-deficient mice are compatible with focal dysmyelination in CS patients. Both TCR-deficient and NER-deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa(-/-), Csb(-/-)) or highly sporadic (Xpa(-/-), Xpc(-/-)) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR-deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa(-/-) and Csb(-/-) TCR-deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR-deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival.


Asunto(s)
Reparación del ADN/genética , Degeneración Nerviosa/genética , Neuronas/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Síndrome de Cockayne/genética , Trastornos por Deficiencias en la Reparación del ADN , Modelos Animales de Enfermedad , Humanos , Leucoencefalopatías/genética , Ratones , Vaina de Mielina/genética , Vaina de Mielina/patología , Degeneración Nerviosa/metabolismo , Neuronas/patología , Mutación Puntual , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
5.
J Neurosci ; 31(23): 8585-94, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21653862

RESUMEN

The POU domain transcription factor Pou3f1 (Oct6/Scip/Tst1) initiates the transition from ensheathing, promyelinating Schwann cells to myelinating cells. Axonal and other extracellular signals regulate Oct6 expression through the Oct6 Schwann cell enhancer (SCE), which is both required and sufficient to drive all aspects of Oct6 expression in Schwann cells. Thus, the Oct6 SCE is pivotal in the gene regulatory network that governs the onset of myelin formation in Schwann cells and provides a link between myelin promoting signaling and activation of a myelin-related transcriptional network. In this study, we define the relevant cis-acting elements within the SCE and identify the transcription factors that mediate Oct6 regulation. On the basis of phylogenetic comparisons and functional in vivo assays, we identify a number of highly conserved core elements within the mouse SCE. We show that core element 1 is absolutely required for full enhancer function and that it contains closely spaced inverted binding sites for Sox proteins. For the first time in vivo, the dimeric Sox10 binding to this element is shown to be essential for enhancer activity, whereas monomeric Sox10 binding is nonfunctional. As Oct6 and Sox10 synergize to activate the expression of the major myelin-related transcription factor Krox20, we propose that Sox10-dependent activation of Oct6 defines a feedforward regulatory module that serves to time and amplify the onset of myelination in the peripheral nervous system.


Asunto(s)
Vaina de Mielina/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXE/metabolismo , Células de Schwann/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Unión Proteica , Ratas , Células de Schwann/citología
6.
PLoS Biol ; 7(10): e1000220, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19841728

RESUMEN

Studies based on cell-free systems and on in vitro-cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Recuperación de Fluorescencia tras Fotoblanqueo , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción TFIIH/genética
7.
Leukemia ; 36(3): 687-700, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34741119

RESUMEN

MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , MicroARNs/genética , ARN Polimerasa II/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética
8.
Eur J Immunol ; 40(9): 2643-54, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20623551

RESUMEN

B-cell receptor (BCR)-mediated signals provide the basis for B-cell differentiation in the BM and subsequently into follicular, marginal zone, or B-1 B-cell subsets. We have previously shown that B-cell-specific expression of the constitutive active E41K mutant of the BCR-associated molecule Bruton's tyrosine kinase (Btk) leads to an almost complete deletion of immature B cells in the BM. Here, we report that low-level expression of the E41K or E41K-Y223F Btk mutants was associated with reduced follicular B-cell numbers and significantly increased proportions of B-1 cells in the spleen. Crosses with 3-83 mu delta and VH81X BCR Tg mice showed that constitutive active Btk expression did not change follicular, marginal zone, or B-1 B-cell fate choice, but resulted in selective expansion or survival of B-1 cells. Residual B cells were hyperresponsive and manifested sustained Ca(2+) mobilization. They were spontaneously driven into germinal center-independent plasma cell differentiation, as evidenced by increased numbers of IgM(+) plasma cells in spleen and BM and significantly elevated serum IgM. Because anti-nucleosome autoantibodies and glomerular IgM deposition were present, we conclude that constitutive Btk activation causes defective B-cell tolerance, emphasizing that Btk signals are essential for appropriate regulation of B-cell activation.


Asunto(s)
Anticuerpos Antinucleares/biosíntesis , Subgrupos de Linfocitos B/metabolismo , Inmunoglobulina M/biosíntesis , Células Plasmáticas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Agammaglobulinemia Tirosina Quinasa , Animales , Anticuerpos Antinucleares/genética , Anticuerpos Antinucleares/metabolismo , Complejo Antígeno-Anticuerpo/metabolismo , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/patología , Señalización del Calcio/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Proliferación Celular , Activación Enzimática/genética , Activación Enzimática/inmunología , Tolerancia Inmunológica/genética , Inmunoglobulina M/sangre , Inmunoglobulina M/genética , Activación de Linfocitos/genética , Ratones , Ratones Transgénicos , Proteínas Mutantes/genética , Células Plasmáticas/inmunología , Células Plasmáticas/patología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Transgenes/genética
9.
Blood ; 114(1): 119-27, 2009 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-19332766

RESUMEN

The simian virus 40 (SV40) T antigen is a potent oncogene able to transform many cell types and has been implicated in leukemia and lymphoma. In this report, we have achieved sporadic SV40 T-antigen expression in mature B cells in mice, by insertion of a SV40 T antigen gene in opposite transcriptional orientation in the immunoglobulin (Ig) heavy (H) chain locus between the D and J(H) segments. SV40 T-antigen expression appeared to result from retention of the targeted germline allele and concomitant antisense transcription of SV40 large T in mature B cells, leading to chronic lymphocytic leukemia (CLL). Although B-cell development was unperturbed in young mice, aging mice showed accumulation of a monoclonal B-cell population in which the targeted IgH allele was in germline configuration and the wild-type IgH allele had a productive V(D)J recombination. These leukemic B cells were IgD(low)CD5(+) and manifested nonrandom usage of V, D, and J segments. V(H) regions were either unmutated, with preferential usage of the VH11 family, or manifested extensive somatic hypermutation. Our findings provide an animal model for B-CLL and show that pathways activated by SV40 T antigen play important roles in the pathogenesis of B-CLL.


Asunto(s)
Antígenos Transformadores de Poliomavirus/genética , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/virología , Virus 40 de los Simios/genética , Virus 40 de los Simios/patogenicidad , Alelos , Animales , Linfocitos B/inmunología , Linfocitos B/virología , Modelos Animales de Enfermedad , Expresión Génica , Heterocigoto , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Leucemia Experimental/genética , Leucemia Experimental/inmunología , Leucemia Experimental/virología , Leucemia Linfocítica Crónica de Células B/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Virus 40 de los Simios/inmunología , Hipermutación Somática de Inmunoglobulina , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
10.
Proc Natl Acad Sci U S A ; 105(34): 12411-6, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18719106

RESUMEN

Chronic stalling of DNA replication forks caused by DNA damage can lead to genomic instability. Cells have evolved lesion bypass pathways such as postreplication repair (PRR) to resolve these arrested forks. In yeast, one branch of PRR involves proliferating cell nuclear antigen (PCNA) polyubiquitination mediated by the Rad5-Ubc13-Mms2 complex that allows bypass of DNA lesion by a template-switching mechanism. Previously, we identified human SHPRH as a functional homologue of yeast Rad5 and revealed the existence of RAD5-like pathway in human cells. Here we report the identification of HLTF as a second RAD5 homologue in human cells. HLTF, like SHPRH, shares a unique domain architecture with Rad5 and promotes lysine 63-linked polyubiquitination of PCNA. Similar to yeast Rad5, HLTF is able to interact with UBC13 and PCNA, as well as SHPRH; and the reduction of either SHPRH or HLTF expression enhances spontaneous mutagenesis. Moreover, Hltf-deficient mouse embryonic fibroblasts show elevated chromosome breaks and fusions after methyl methane sulfonate treatment. Our results suggest that HLTF and SHPRH are functional homologues of yeast Rad5 that cooperatively mediate PCNA polyubiquitination and maintain genomic stability.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas , Daño del ADN , Humanos , Proteínas de Saccharomyces cerevisiae , Homología Estructural de Proteína , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
11.
Nat Commun ; 12(1): 4605, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326328

RESUMEN

BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espermatogénesis/fisiología , Animales , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cristalografía por Rayos X/métodos , Femenino , Recombinación Homóloga , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Meiosis , Ratones , Modelos Animales , Dominios y Motivos de Interacción de Proteínas , Eliminación de Secuencia
12.
Nat Cell Biol ; 22(5): 534-545, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32367046

RESUMEN

Following implantation, the naive pluripotent epiblast of the mouse blastocyst generates a rosette, undergoes lumenogenesis and forms the primed pluripotent egg cylinder, which is able to generate the embryonic tissues. How pluripotency progression and morphogenesis are linked and whether intermediate pluripotent states exist remain controversial. We identify here a rosette pluripotent state defined by the co-expression of naive factors with the transcription factor OTX2. Downregulation of blastocyst WNT signals drives the transition into rosette pluripotency by inducing OTX2. The rosette then activates MEK signals that induce lumenogenesis and drive progression to primed pluripotency. Consequently, combined WNT and MEK inhibition supports rosette-like stem cells, a self-renewing naive-primed intermediate. Rosette-like stem cells erase constitutive heterochromatin marks and display a primed chromatin landscape, with bivalently marked primed pluripotency genes. Nonetheless, WNT induces reversion to naive pluripotency. The rosette is therefore a reversible pluripotent intermediate whereby control over both pluripotency progression and morphogenesis pivots from WNT to MEK signals.


Asunto(s)
Células Madre Embrionarias/fisiología , Células Madre Pluripotentes/fisiología , Animales , Blastocisto/metabolismo , Blastocisto/fisiología , Diferenciación Celular/fisiología , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/metabolismo , Estratos Germinativos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Morfogénesis/fisiología , Factores de Transcripción Otx/metabolismo , Células Madre Pluripotentes/metabolismo
13.
Circ Res ; 100(5): 738-46, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17293478

RESUMEN

The Fibulins are a 6-member protein family hypothesized to function as intermolecular bridges that stabilize the organization of extracellular matrix structures. Here, we show that reduced expression of Fibulin-4 leads to aneurysm formation, dissection of the aortic wall and cardiac abnormalities. Fibulin-4 knockdown mice with a hypomorphic expression allele arose from targeted disruption of the adjacent Mus81 endonuclease gene. Mice homozygous for the Fibulin-4 reduced expression allele (Fibulin-4(R/R)) show dilatation of the ascending aorta and a tortuous and stiffened aorta, resulting from disorganized elastic fiber networks. They display thickened aortic valvular leaflets that are associated with aortic valve stenosis and insufficiency. Strikingly, already a modest reduction in expression of Fibulin-4 in the heterozygous Fibulin-4(+/R) mice occasionally resulted in small aneurysm formation. To get insight into the underlying molecular pathways involved in aneurysm formation and response to aortic failure, we determined the aorta transcriptome of Fibulin-4(+/R) and Fibulin-4(R/R) animals and identified distinct and overlapping biological processes that were significantly overrepresented including cytoskeleton organization, cell adhesion, apoptosis and several novel gene targets. Transcriptome and protein expression analysis implicated perturbation of TGF-beta signaling in the pathogenesis of aneurysm in fibulin-4 deficient mice. Our results show that the dosage of a single gene can determine the severity of aneurysm formation and imply that disturbed TGF-beta signaling underlies multiple aneurysm phenotypes.


Asunto(s)
Válvula Aórtica/anomalías , Válvula Aórtica/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Enfermedades de las Válvulas Cardíacas/genética , Homeostasis/genética , Animales , Aorta Torácica/patología , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/fisiopatología , Proteínas de la Matriz Extracelular/biosíntesis , Enfermedades de las Válvulas Cardíacas/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Transducción de Señal/genética , Transcripción Genética , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/genética
14.
PLoS One ; 14(3): e0208659, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30921348

RESUMEN

Krüppel-like factor 1 (KLF1) is an essential transcription factor for erythroid development, as demonstrated by Klf1 knockout mice which die around E14 due to severe anemia. In humans, >140 KLF1 variants, causing different erythroid phenotypes, have been described. The KLF1 Nan variant, a single amino acid substitution (p.E339D) in the DNA binding domain, causes hemolytic anemia and is dominant over wildtype KLF1. Here we describe the effects of the KLF1 Nan variant during fetal development. We show that Nan embryos have defects in erythroid maturation. RNA-sequencing of the KLF1 Nan fetal liver cells revealed that Exportin 7 (Xpo7) was among the 782 deregulated genes. This nuclear exportin is implicated in terminal erythroid differentiation; in particular it is involved in nuclear condensation. Indeed, KLF1 Nan fetal liver cells had larger nuclei and reduced chromatin condensation. Knockdown of XPO7 in wildtype erythroid cells caused a similar phenotype. We propose that reduced expression of XPO7 is partially responsible for the erythroid defects observed in KLF1 Nan erythroid cells.


Asunto(s)
Anemia Hemolítica/genética , Células Eritroides/citología , Factores de Transcripción de Tipo Kruppel/genética , Proteína de Unión al GTP ran/genética , Sustitución de Aminoácidos , Animales , Diferenciación Celular , Células Cultivadas , Cromatina/metabolismo , Modelos Animales de Enfermedad , Embrión no Mamífero/metabolismo , Células Eritroides/metabolismo , Eritropoyesis , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Análisis de Secuencia de ARN/métodos , Proteína de Unión al GTP ran/metabolismo
15.
Cell Rep ; 27(13): 3790-3798.e7, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242413

RESUMEN

The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples. Inactivation of the mouse Hsf2bp gene results in male infertility due to a severe HR defect during spermatogenesis. The BRCA2-HSF2BP interaction is highly evolutionarily conserved and maps to armadillo repeats in HSF2BP and a 68-amino acid region between the BRC repeats and the DNA binding domain of human BRCA2 (Gly2270-Thr2337) encoded by exons 12 and 13. This region of BRCA2 does not harbor known cancer-associated missense mutations and may be involved in the reproductive rather than the tumor-suppressing function of BRCA2.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Choque Térmico/metabolismo , Espermatogénesis , Animales , Proteína BRCA2/genética , Proteínas Portadoras/genética , Línea Celular Tumoral , Proteínas de Choque Térmico/genética , Humanos , Ratones , Mutación Missense , Dominios Proteicos
16.
DNA Repair (Amst) ; 5(3): 392-8, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16443401

RESUMEN

Several low fidelity DNA polymerases participate in generating mutations in immunoglobulin genes. Polymerase eta is clearly involved in the process by causing substitutions of A:T base pairs, whereas polymerase iota has a controversial role. Although the frequency of mutations was decreased in the BL2 cell line deficient for polymerase iota, hypermutation was normal in the 129 strain of mice, which has a natural nonsense mutation in the Poli gene. It is possible that the mice compensated for the defect over time, or that polymerase eta substituted in the absence of polymerase iota. To examine polymerase iota in a genetically defined background, we backcrossed the 129 nonsense mutation to the C57BL/6 strain for six generations. Class switch recombination and hypermutation were studied in these mice and in congenic mice doubly deficient for both polymerases iota and eta. The absence of both polymerases did not affect production of IgG1, indicating that these enzymes are not involved in switch recombination. Poli(-/-F6) mice had the same types of nucleotide substitutions in variable genes as their C57BL/6 counterparts, and mice doubly deficient for polymerases iota and eta had the same mutational spectrum as Polh-/- mice. Thus, polymerase iota did not contribute to the mutational spectra, even in the absence of polymerase eta.


Asunto(s)
Codón sin Sentido , ADN Polimerasa Dirigida por ADN/fisiología , Hipermutación Somática de Inmunoglobulina/genética , Animales , Secuencia de Bases , ADN Polimerasa Dirigida por ADN/genética , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G/metabolismo , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Recombinación Genética , ADN Polimerasa iota
17.
Mol Cell Biol ; 24(13): 5776-87, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15199134

RESUMEN

Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Animales , Ciclo Celular , Línea Celular , Aberraciones Cromosómicas , ADN/química , ADN/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/fisiología , Endonucleasas/deficiencia , Endonucleasas/fisiología , Rayos gamma , Histonas/análisis , Inmunohistoquímica , Ratones , Ratones Noqueados , Mitomicina/farmacología , Conformación de Ácido Nucleico , Rayos Ultravioleta
18.
DNA Repair (Amst) ; 25: 27-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25463395

RESUMEN

Accurate DNA double-strand break repair through homologous recombination is essential for preserving genome integrity. Disruption of the gene encoding RAD51, the protein that catalyzes DNA strand exchange during homologous recombination, results in lethality of mammalian cells. Proteins required for homologous recombination, also play an important role during DNA replication. To explore the role of RAD51 in DNA replication and DSB repair, we used a knock-in strategy to express a carboxy-terminal fusion of green fluorescent protein to mouse RAD51 (mRAD51-GFP) in mouse embryonic stem cells. Compared to wild-type cells, heterozygous mRad51(+/wt-GFP) embryonic stem cells showed increased sensitivity to DNA damage induced by ionizing radiation and mitomycin C. Moreover, gene targeting was found to be severely impaired in mRad51(+/wt-GFP) embryonic stem cells. Furthermore, we found that mRAD51-GFP foci were not stably associated with chromatin. From these experiments we conclude that this mRad51-GFP allele is an antimorphic allele. When this allele is present in a heterozygous condition over wild-type mRad51, embryonic stem cells are proficient in DNA replication but display defects in homologous recombination and DNA damage repair.


Asunto(s)
Replicación del ADN/genética , Heterocigoto , Recombinasa Rad51/genética , Reparación del ADN por Recombinación/genética , Alelos , Animales , Células Cultivadas , ADN/efectos de los fármacos , ADN/metabolismo , ADN/efectos de la radiación , Roturas del ADN de Doble Cadena , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Mitomicina/farmacología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Recombinasa Rad51/metabolismo , Radiación Ionizante
19.
Stem Cell Reports ; 4(1): 114-128, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25544567

RESUMEN

Therapeutic application of human embryonic stem cells (hESCs) requires precise control over their differentiation. However, spontaneous differentiation is prevalent, and growth factors induce multiple cell types; e.g., the mesoderm inducer BMP4 generates both mesoderm and trophoblast. Here we identify endogenous WNT signals as BMP targets that are required and sufficient for mesoderm induction, while trophoblast induction is WNT independent, enabling the exclusive differentiation toward either lineage. Furthermore, endogenous WNT signals induce loss of pluripotency in hESCs and their murine counterparts, epiblast stem cells (EpiSCs). WNT inhibition obviates the need to manually remove differentiated cells to maintain cultures and improves the efficiency of directed differentiation. In EpiSCs, WNT inhibition stabilizes a pregastrula epiblast state with novel characteristics, including the ability to contribute to blastocyst chimeras. Our findings show that endogenous WNT signals function as hidden mediators of growth factor-induced differentiation and play critical roles in the self-renewal of hESCs and EpiSCs.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Estratos Germinativos/citología , Células Madre/citología , Células Madre/metabolismo , Vía de Señalización Wnt , Animales , Proteína Morfogenética Ósea 4/genética , Diferenciación Celular/genética , Células Cultivadas , Análisis por Conglomerados , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Ratones , Fenotipo , Unión Proteica , Transcriptoma , Proteínas Wnt/metabolismo
20.
Nat Commun ; 6: 8893, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26593974

RESUMEN

How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2-IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Eritroides/citología , Eritropoyesis , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA