Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 1): 114439, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174760

RESUMEN

Abundant reserves of metals and oil have spurred large-scale mining developments across northwestern Canada during the past 80 years. Historically, the associated emissions footprint of hazardous metal(loid)s has been difficult to identify, in part, because monitoring records are too short and sparse to have characterized their natural concentrations before mining began. Stratigraphic analysis of lake sediment cores has been employed where concerns of pollution exist to determine pre-disturbance metal(loid) concentrations and quantify the degree of enrichment since mining began. Here, we synthesize the current state of knowledge via systematic re-analysis of temporal variation in sediment metal(loid) concentrations from 51 lakes across four key regions spanning 670 km from bitumen mining in the Alberta Oil Sands Region (AOSR) to gold mining (Giant and Con mines) at Yellowknife in central Northwest Territories. Our compilation includes upland and floodplain lakes at varying distances from the mines to evaluate dispersal of pollution-indicator metal(loid)s from bitumen (vanadium and nickel) and gold mining (arsenic and antimony) via atmospheric and fluvial pathways. Results demonstrate 'severe' enrichment of vanadium and nickel at near-field sites (≤20 km) within the AOSR and 'severe' (near-field; ≤ 40 km) to 'considerable' (far-field; 40-80 km) enrichment of arsenic and antimony due to gold mining at Yellowknife via atmospheric pathways, but no evidence of enrichment of vanadium or nickel via atmospheric or fluvial pathways at the Peace-Athabasca Delta and Slave River Delta. Findings can be used by decision makers to evaluate risks associated with contaminant dispersal by the large-scale mining activities. In addition, we reflect upon methodological approaches to be considered when evaluating paleolimnological data for evidence of anthropogenic contributions to metal(loid) deposition and advocate for proactive inclusion of paleolimnology in the early design stage of environmental contaminant monitoring programs.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Yacimiento de Petróleo y Gas , Oro/análisis , Contaminantes Químicos del Agua/análisis , Vanadio , Níquel , Arsénico/análisis , Antimonio , Minería , Lagos , Monitoreo del Ambiente/métodos , Alberta
2.
Sci Total Environ ; 912: 169538, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38141996

RESUMEN

Deltas are hydrologically dynamic landscapes where river floodwaters create a mosaic of productive ecosystems that provide important services. The flood regime, however, is vulnerable to upstream anthropogenic activities, climate change and geomorphic processes. Deciphering the roles of multiple potential stressors on flood regime change is critical for developing appropriate adaptive and mitigative strategies but requires knowledge of hydrological variability at broader scales of space and time than is typically available from instrumental and observational records. At the globally recognized Peace-Athabasca Delta (Canada), the timing, magnitude and causes of reduced flooding and drawdown of perched basin water levels remain an intense focus of investigation. Here we employ novel 'paleofloodscapes', generated from geospatial interpolation of Bayesian mixing model fingerprinting of sediment elemental concentrations, to quantify variation in the delta's flood regime during the past ~140 years. Results reveal that flooding of the delta began to decline several decades before hydroelectric regulation of Peace River flow, not coincident with it, and the influence of floodwaters from the unregulated Athabasca River has declined more than the regulated Peace River. A key discovery is that widespread flooding of perched basins occurs when ice-jam events on the river(s) coincide with a relatively high water-plane in the delta's open-drainage network. Without knowledge of open-drainage water levels, inferred change to the flood regime of perched basins may be inaccurate when derived solely from analyses of Peace River hydrometric data and climatic records. The paleofloodscapes illustrate that rising sediment delivery caused by a natural river avulsion in 1982 may undermine the intended purpose of a proposed weir installation. The most recent paleofloodscape, developed from lake surface sediment sampling shortly after widespread flooding, demonstrates the value of the approach as a landscape hydrological monitoring tool, and is readily transferrable to other floodplains to track flood regime change.

3.
Sci Prog ; 106(2): 368504231181452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37321662

RESUMEN

Shallow waterbodies are abundant in Arctic and subarctic landscapes where they provide productive wildlife habitat and hold cultural and socioeconomic importance for Indigenous communities. Their vulnerability to climate-driven hydrological and limnological changes enhances a need for long-term monitoring data capable of tracking aquatic ecosystem responses. Here, we evaluate biological and inferred physicochemical responses associated with a rise in rainfall-generated runoff and increasingly positive lake water balances in Old Crow Flats (OCF), a 5600 km2 thermokarst landscape in northern Yukon. This is achieved by analyzing periphytic diatom community composition in biofilms accrued on artificial-substrate samplers at 14 lakes collected mostly annually during 2008-2019 CE. Results reveal that diatom communities at 10 of the 14 lakes converged toward a composition typical of lakes with rainfall-dominated input waters. These include six of nine lakes that were not initially dominated by rainfall input. The shifts in diatom community composition infer rise of lake-water pH and ionic content, and they reveal that northern shallow lake ecosystems are responsive to climate-driven increases in rainfall. Based on data generated during the 12 -year-long monitoring period, we conclude that lakes located centrally within OCF are most vulnerable to rapid climate-driven hydroecological change due to flat terrain, larger lake surface area, and sparse terrestrial vegetation, which provide less resistance to lake expansion, shoreline erosion, and sudden drainage. This information assists the local Indigenous community and natural resource stewardship agencies to anticipate changes to traditional food sources and inform adaptation options.


Asunto(s)
Cuervos , Diatomeas , Animales , Lagos/química , Ecosistema , El Yukón , Canadá , Agua
4.
Oncol Lett ; 18(4): 3914-3924, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31516602

RESUMEN

Immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are associated with immunologic tolerance and poor prognosis in ovarian cancer (OvCa). We hypothesized that women with germline BRCA1 and BRCA2 mutation-associated (gBRCAm) OvCa would have fewer circulating immunosuppressive immune cells compared to those with BRCA wild-type (BRCAwt) disease during their early disease course (<5 years post-diagnosis) where gBRCAm is a favorable prognostic factor. We collected and viably froze peripheral blood mononuclear cells (PBMCs) from patients with recurrent OvCa olaparib clinical trials (NCT01445418/NCT01237067). Immune subset analyses were performed using flow cytometry for Tregs, exhausted CD8+ T cells, monocytes and MDSCs. Functional marker expression, including cytotoxic T lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain 3 (TIM-3) and programmed cell death protein 1 (PD-1) was evaluated. Data were analyzed using FlowJo. Pretreatment PBMCs were collected from 41 patients (16 gBRCAm/25 BRCAwt). The percentage of MDSCs among viable CD45+ PBMC was lower in gBRCAm OvCa compared with BRCAwt OvCa (median 0.565 vs. 0.93%, P=0.0086) but this difference was not seen in those women >5 years post-diagnosis. CD8+ T cells among viable CD45+ PBMCs and CTLA-4+/CD8+ T cells were higher in gBRCAm carriers than patients with BRCAwt, in particular for those <5 years post-diagnosis (median 20.4 vs. 9.78%, P=0.031 and median MFI 0.19 vs. 0.22, P=0.0074, respectively). TIM-3 expression on Tregs was associated with poor progression-free survival, independent of gBRCAm status (P<0.001). Our pilot data suggested that patients with gBRCAm OvCa may have fewer circulating MDSCs but higher CD8+ T cells in PBMCs during their early disease course. This may contribute to the observed survival benefit for these women in their first post-diagnosis decade.

5.
Clin Cancer Res ; 24(6): 1389-1401, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29263182

RESUMEN

Purpose: A major challenge in platinum-based cancer therapy is the clinical management of chemoresistant tumors, which have a largely unknown pathogenesis at the level of epigenetic regulation.Experimental Design: We evaluated the potential of using global loss of 5-hydroxymethylcytosine (5-hmC) levels as a novel diagnostic and prognostic epigenetic marker to better assess platinum-based chemotherapy response and clinical outcome in high-grade serous tumors (HGSOC), the most common and deadliest subtype of ovarian cancer. Furthermore, we identified a targetable pathway to reverse these epigenetic changes, both genetically and pharmacologically.Results: This study shows that decreased 5-hmC levels are an epigenetic hallmark for malignancy and tumor progression in HGSOC. In addition, global 5-hmC loss is associated with a decreased response to platinum-based chemotherapy, shorter time to relapse, and poor overall survival in patients newly diagnosed with HGSOC. Interestingly, the rescue of 5-hmC loss restores sensitivity to platinum chemotherapy in vitro and in vivo, decreases the percentage of tumor cells with cancer stem cell markers, and increases overall survival in an aggressive animal model of platinum-resistant disease.Conclusions: Consequently, a global analysis of patient 5-hmC levels should be included in future clinical trials, which use pretreatment with epigenetic adjuvants to elevate 5-hmC levels and improve the efficacy of current chemotherapies. Identifying prognostic epigenetic markers and altering chemotherapeutic regimens to incorporate DNMTi pretreatment in tumors with low 5-hmC levels could have important clinical implications for newly diagnosed HGSOC disease. Clin Cancer Res; 24(6); 1389-401. ©2017 AACR.


Asunto(s)
5-Metilcitosina/análogos & derivados , Reprogramación Celular/genética , Cistadenocarcinoma Seroso/etiología , Cistadenocarcinoma Seroso/metabolismo , Epigénesis Genética , Neoplasias Ováricas/etiología , Neoplasias Ováricas/metabolismo , 5-Metilcitosina/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Cistadenocarcinoma Seroso/mortalidad , Cistadenocarcinoma Seroso/patología , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Clasificación del Tumor , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Pronóstico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Recurrencia , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Ecol Evol ; 6(13): 4526-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27386094

RESUMEN

The hydrology of shallow lakes (and ponds) located in the western Hudson Bay Lowlands (HBL) is sensitive to climate warming and associated permafrost thaw. However, their biological characteristics are poorly known, which hampers effective aquatic ecosystem monitoring. Located in northern Manitoba along the southwestern coast of Hudson Bay, Wapusk National Park (WNP) encompasses numerous shallow lakes representative of the subarctic zone. We analyzed the distribution and diversity of diatom (microscopic algae; class Bacillariophyceae) assemblages in surficial sediments of 33 lakes located in three different ecozones spanning a vegetation gradient, from NE to SW: the Coastal Fen (CF), the Interior Peat Plateau (IPP), and the Boreal Spruce Forest (BSF). We found significant differences (P < 0.05) in diatom community composition between CF and IPP lakes, and CF and BSF lakes, but not between IPP and BSF lakes. These results are consistent with water chemistry measurements, which indicated distinct limnological conditions for CF lakes. Diatom communities in CF lakes were generally dominated by alkaliphilous taxa typical of waters with medium to high conductivity, such as Nitzschia denticula. In contrast, several IPP and BSF lakes were dominated by acidophilous and circumneutral diatom taxa with preference for low conductivity (e.g., Tabellaria flocculosa, Eunotia mucophila, E. necompacta var. vixcompacta). This exploratory survey provides a first detailed inventory of the diatom assemblages in the WNP region needed for monitoring programs to detect changes in shallow lake ecosystems and ecozonal shifts in response to climate variations.

7.
Sci Total Environ ; 544: 811-23, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26688053

RESUMEN

Growth of natural resource development in northern Canada has raised concerns about the effects on downstream aquatic ecosystems, but insufficient knowledge of pre-industrial baseline conditions continues to undermine ability of monitoring programs to distinguish industrial-derived contaminants from those supplied by natural processes. Here, we apply a novel paleolimnological approach to define pre-industrial baseline concentrations of 13 priority pollutant metals and vanadium and assess temporal changes, pathways and sources of these metals at a flood-prone lake (SD2) in the Slave River Delta (NWT, Canada) located ~500 km north of Alberta's oil sands development and ~140 km south of a former gold mine at Yellowknife, NWT. Results identify that metal concentrations, normalized to lithium concentration, are not elevated in sediments deposited during intervals of high flood influence or low flood influence since onset of oil sands development (post-1967) relative to the 1920-1967 baseline established at SD2. When compared to a previously defined baseline for the upstream Athabasca River, several metal-Li relations (Cd, Cr, Ni, Zn, V) in post-1967 sediments delivered by floodwaters appear to plot along a different trajectory, suggesting that the Peace and Slave River watersheds are important natural sources of metal deposition at the Slave River Delta. However, analysis revealed unusually high concentrations of As deposited during the 1950s, an interval of very low flood influence at SD2, which corresponded closely with emission history of the Giant Mine gold smelter indicating a legacy of far-field atmospheric pollution. Our study demonstrates the potential for paleolimnological characterization of baseline conditions and detection of pollution from multiple pathways in floodplain ecosystems, but that knowledge of paleohydrological conditions is essential for interpretation of contaminant profiles.


Asunto(s)
Monitoreo del Ambiente/métodos , Lagos/química , Metales/análisis , Contaminantes Químicos del Agua/análisis , Alberta , Territorios del Noroeste , Ríos , Contaminación Química del Agua/estadística & datos numéricos
8.
Ecol Evol ; 5(4): 921-39, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25750718

RESUMEN

Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds ("WAP 12", "WAP 20", and "WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of (210)Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA